K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

Vì f(x)=(x-1)(x+2) nên 1 và -2 là nghiệm của f(x)

Nghiệm của f(x) cũng là nghiệm của g(x) nên g(1)=0 và g(-2)=0

Ta có:     g(1)=0=1+a+b+2

            \(\Rightarrow a+b=-3\)

               g(-2)=0=(-8)+4a-2b+2

             \(\Rightarrow4a-2b=6\)

Ta có :         \(\hept{\begin{cases}2a+2b=-6\\4a-2b=6\end{cases}}\)

                \(\Rightarrow6a=0\)

                 \(\Rightarrow\hept{\begin{cases}a=0\\b=-3\end{cases}}\)

26 tháng 6 2020

Ta có: \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\Leftrightarrow n^0\in\left\{1;-2\right\}\)

Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có:

+ Nếu x = 1: \(a+b+3=0\Leftrightarrow a+b=-3\Rightarrow2a+2b=-6\) 

+ Nếu x = -2: \(4a-2b-6=0\Leftrightarrow4a-2b=6\)

Cộng vế 2 đẳng thức trên ta được:

\(2a+2b+4a-2b=-6+6\)

\(\Leftrightarrow6a=0\Rightarrow a=0\)

\(\Rightarrow b=-3\)

Vậy \(\hept{\begin{cases}a=0\\b=-3\end{cases}}\)

23 tháng 5 2016

f(x)=0

<=>(x-1)(x+2)=0

<=>x-1=0 hoặc x+2=0

<=>x=1 hoặc x=-2

tiếp theo thay vô làm

15 tháng 5 2016

Nghiệm của 2 đa thức như nhau nên ta có: 

Nghiệm của đa thức f(x) là: 

\(\left(x-1\right)\left(x+2\right)=0\)

<=> x=1;x=-2

Thay x=1 vào g(x):

1+a+b+2=0 => a+b=-3 => a=-b-3 (1)

Thay x=-2 vào g(x):

-8+4a-2b+2=0 =>4a-2b=6 (2)

Thay 1 vào 2, ta có:

4x(-b-3)-2b=6

<=>-4b-12-2b=6

<=>-6b=18

<=>b=-3

=> a=0

19 tháng 5 2021

Cách 1: Đặt \(g\left(x\right)=f\left(x\right)\left(x-m\right)\Leftrightarrow x^3+ax^2+bx+2=\left(x-1\right)\left(x+2\right)\left(x-m\right)\)

\(\Leftrightarrow x^3+ax^2+bx+2=x^3+\left(1-m\right)x^2+\left(-m-2\right)x+2m\)

Đồng nhất hệ số 2 vế ta được: \(\hept{\begin{cases}a=1-m\\b=-m-2\\2=2m\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\a=0\\b=-3\end{cases}}\)

Vậy a=0,b=-3

Cách 2:

Ta có: \(\hept{\begin{cases}f\left(1\right)=0\\f\left(-2\right)=0\end{cases}}\Rightarrow\hept{\begin{cases}g\left(1\right)=0\\g\left(-2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}1^3+a.1^2+b.1+2=0\\\left(-2\right)^3+a.\left(-2\right)^2+b.\left(-2\right)+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=-3\\4a-2b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-3\end{cases}}\)

Vậy a=0,b=-3

a,ta có:

 f(1)= a.12+2.1+b=0

=>       a+2+b=0

=>        a+b=-2 (1)

f(-2)= a.(-2)2+2.(-2)+b=0

 => 4a - 4 + b=0

=> 4a+b=4    (2)

Trừ vế (2) cho vế (1) ,ta có:

  3a=6

=>a= 2

thay a =2 vào (1), ta có: 2+b=-2 => b= -4

Vậy a=2, b=-4

b,Do g(x) có 2 nghiệm 1 và -1 nên:

g(1)=3.13 + a.12+b.1+c = 0

=> 3+a+b+c =0

=> a+b+c = -3 (1)

g(-1) = 3. (-1)3+a.(-1)2+b(-1)+c=0

=> -3 +a -b+c =0

=> a-b+c=3    (2)

Trừ vế (1) cho vế (2), ta có:

2b=-6 

=> b=-3

thay b=-3 vào (1), ta có:

a-3+c=-3

=> a+c=0

=> a+ 2a +1=0

=> 3a=-1

=> a= \(-\frac{1}{3}\)

Khi đó ta có:  \(-\frac{1}{3}+c=0\Rightarrow c=\frac{1}{3}\)

Vậy:...