Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+a+b+c+d+e=2
32+16a+8b+4c+2d+e=9
243+81a+27b+9c+3d+e=22
1024+256a+64b+16c+4d+e=41
3125+625a+125b+25c+5d+e=66
\(\Leftrightarrow\) a+b+c+d+e=1
16a+8b+4c+2d+e=-23
81a+27b+9c+3d+e=-224
256a+64b+16c+4d+e=-983
625a+125b+25c+5d+e=-3059
(bạn tự rút e và d từ pt ra nha, do dài quá mình ko ghi hết)
\(\Leftrightarrow\) e=1-a-b-c-d
d=-24-15a-7b-3c
50a+12b+2c=-174
210a+42b+6c=-912
564+96a+12c=-2964
Vậy a=-15, b=85, c=-222
\(\Rightarrow\) f(2007)=3,256393374\(\cdot10^{16}\)
Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)