Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(f(7)=a\cdot7^3+2\cdot b\cdot7^2+3\cdot c\cdot7+4d=343a+98b+21c+4d\)
Lại có : \(f(3)=a\cdot3^3+2\cdot b\cdot3^2+3\cdot c\cdot3+4d=27a+18b+9c+4d\)
Giả sử phản chứng nếu \(f(7)\)và \(f(3)\)đồng thời bằng 73 và 58 suy ra là :
\(f(7)-f(3)=(343a-27a)+(98b-18b)+(21c-9c)+(4d-4d)=73-58=15\)
\(\Rightarrow f(7)-f(3)=316a+90b+12c=15\)
Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k
\(f(7)-f(3)=2k=15\)
Mà 15 ko chia hết cho 2 , suy ra giả sử sai
=> đpcm
Mấy cái này mk kho bít sorry!!!!!!253564656464646474748949474626515466575757575665555
Ta có f(7) = a.7^3+2.b.7^2+3.c.7+4d = 343a +98b+21c+4d
Lại có f(3)= \(a.3^3+2.b.3^2+3.c.3+4.d=27a+18b+9c+4d\\ \)
Giả sử phản chứng : Nếu f(7) và f(3) đồng thời bằng 73 và 58 thì suy ra : \(f\left(7\right)-f\left(3\right)=\left(343a-27a\right)+\left(98b-18b\right)+\left(21c-9c\right)+\left(4d-4d\right)=73-58=15\)
\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=316a+90b+12c=15\)
Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k
\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=2k=15\)
Mà 15 ko chia hết cho 2 , suy ra giả sử sai
\(\Rightarrow\)\(\left(ĐPCM\right)\)
Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
Tính chẵn lẻ của bx2 phụ thuộc vào b
Tính chẵn lẻ của cx phụ thuộc vào c
d là số lẻ
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên
Hơi khó hỉu chút nhé ahihi
Ko biết là bạn có cần nữa ko.
Nhưng mình vẫn trả lời cho những bạn khác đang cần.
Do P(0) và P(1) lẻ nên ta có:
P(0)=d=> d là số lẻ
P(1)=a+b+c+d => a+b+c+d là số lẻ
Giả sử y là nghiệm nguyên của P(x). Khi đó:
P(y)=ay^3+by^2+cy+d=0
=>ay^3+by^2+cy=-d
Mà d là số lẻ
=>y là số lẻ
Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)
=a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)
=a(y^3-1)+b(y^2-1)+c(y-1)
Do y là số lẻ=>P(y)-P(1) là số chẵn(1)
Mà P(y)-P(1)= 0-a+b+c+d
=-a-b-c-d
Do a+b+c+d lẻ
=>-a-b-c-d lẻ
Hay P(y)-P(1) là số lẻ(2)
Vì (1) và (2) mâu thuẫn
=> Giả sử sai
Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)
ta có: F(x) chia hết 5 => F(0)= a.0^3 + b.0^2 + c.0 + d chia hết 5
=> 0+0+0+d chia hết cho 5 => d chia hết 5
ta có: F(1)= a.1^3 + b.1^2 +c.1 + d chia hết 5
=> a+b+c+d chia hết 5
Mà d chia hết 5 => a+b+c chia hết 5 (1)
ta có:F(-1)= a.(-1)^3 + b.(-1)^2 + c.(-1) +d chia hết 5
=> -a+b-c+d chia hết 5
Mà d chia hết 5 => -a+b-c chia hết 5 (2)
Từ (1) và (2) => (a+b+c)+(-a+b-c) chia hết 5
=> a+b+c-a+b-c chia hết 5 => 2b chia hết 5 => b chia hết 5
Từ (1) và (2) => (a+b+c)-(-a+b-c) chia hêt 5
=> a+b+c+a-b+c chia hết 5 => 2a+2c chia hết 5 (3)
ta có: F(2)= a.2^3 + b.2^2 + c.2 +d chia hết 5
=> 8a+4b+2c+d chia hết 5
Mà b,d chia hết 5 => 8a+2c chia hết 5 (4)
Từ (3) và (4) => (8a+2c)-(2a+2c) chia hết 5 => 6a chia hết 5 => a chia hết 5
=> c chia hết 5
Vậy...
Đúng thì k nha mina !!
Với đa thức hệ số nguyên, xét 2 số nguyên m, n bất kì, ta có:
\(f\left(m\right)-f\left(n\right)=am^3+bm^2+cm+d-an^3-bn^2-cn-d\)
\(=a\left(m^3-n^3\right)+b\left(m^2-n^2\right)+c\left(m-n\right)\)
\(=a\left(m-n\right)\left(m^2+n^2+mn\right)+b\left(m-n\right)\left(m+n\right)+c\left(m-n\right)\)
\(=\left(m-n\right)\left[a\left(m^2+n^2+mn\right)+b\left(m+n\right)+c\right]⋮\left(m-n\right)\)
\(\Rightarrow f\left(m\right)-f\left(n\right)⋮m-n\) với mọi m, n nguyên
Giả sử tồn tại đồng thời \(f\left(7\right)=53\) và \(f\left(3\right)=35\)
Theo cmt, ta phải có: \(f\left(7\right)-f\left(3\right)⋮7-3\Leftrightarrow53-35⋮4\Rightarrow18⋮4\) (vô lý)
Vậy điều giả sử là sai hay không thể đồng thời tồn tại \(f\left(7\right)=53\) và \(f\left(3\right)=35\)
em cảm ơn thầy