K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

a) Khi x = 2 là nghiệm của đa thức f(x) thì

\(f\left(x\right)=a.2^2-\left(5a-2\right).2+2=0\\ \Leftrightarrow4a-10a+4+2=0\\ \Leftrightarrow-6a=-6\\ \Leftrightarrow a=1\)

Vậy để x = 2 là nghiệm của đa thức f(x) thì a = 1

b) Khi a = 1 để f(x) có nghiệm thì 

\(f\left(x\right)=x^2-x.\left(5-2\right)+2=0\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy khi a = 1 thì nghiệm của đa thức f(x) là \(x\in\left\{1;2\right\}\)

4 tháng 8 2016

B1:

a)Xét đa thức f(x) = x^4 +27x

 Ta có: x^4+27x=0

=> x(x^3+27)=0

=>x=0 hoặc x^3+27=0 hay x=(-3)

Vậy nghiệm của đa thức f(x) = x^4+27x là x=0 và x=-3

4 tháng 8 2016

B1: tìm nghiệm của:

a, f(x)= x4 + 27x
b, f(x)= 3x2 - 7x + 4

B2: tìm a để đa thức f(x) = x2 - ax + 6 nhận 2 là nghiệm. tìm nghiệm còn lại

a)Xét đa thức f(x) = x^4 +27x

 Ta có: x^4+27x=0

=> x(x^3+27)=0

Suy ra  nghiệm của đa thức:

f(x) = x^4+27x là x=0 và x=-3

5 tháng 4 2017

a) m=3
b) x=-1     x=-2 

6 tháng 7 2017

ai giúp mình đi

1 tháng 3 2019

a, Để f(x) nhận 3 là nghiệm thì : \(3^2-3m+15=0\)

                                        \(\Leftrightarrow24-3m=0\)

                                        \(\Leftrightarrow m=8\)

b, Với m = 8 thì \(x^2-8x+15=0\)

                 \(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)

                \(\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)

Vậy \(S=\left\{3;5\right\}\)

28 tháng 7 2017

a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)

=> \(1-a-9+b=27-9a-27+b\)

=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)

Từ đó tính được b = 9.

b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)

Đa thức f(x) có nghiệm khi:

\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)

Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H