Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có :
\(f\left(3\right)=a.3^2+3b+c=9a+3b+c\)
\(f\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)+c=4a-2b+c\)
hay \(f\left(3\right).f\left(2\right)\ge0\)
\(\Leftrightarrow\left(9a+3b+c\right)\left(4a-2b+c\right)=0\)
Dấu ''='' xảy ra <=> \(a=b=c=0\)( thỏa mãn điều kiện )
13a+b+2c=0
=>b=-13a-2c
f(-2)=4a-2b+c=4a+c+26a+4c=30a+5c
f(3)=9a+3b+c=9a+c-39a-6c=-30a-5c
=>f(-2)*f(3)<=0
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số
\(f\left(3\right).f\left(-2\right)=\left(9a+3b+c\right)\left(4a-2b+c\right)\)
\(=\left[3\left(a+b\right)+6a+c\right]\left[-2\left(a+b\right)+6a+c\right]\)
\(=\left(6a+c\right)\left(6a+c\right)=\left(6a+c\right)^2\ge0\) (đpcm)
Ta có: f(1) = a.12 + b.1 + c = a + b + c
f(-1) = a.(-1)2 + b.(-1) + c = a - b + c
=> f(1) = f(-1) => a + b + c = a - b + c
=> a + b = a - b => a + b - a + b = 0
=> 2b = 0 => b = 0
Khi đó, ta có: f(-x) = a.(-x)2 + b.(-x) + c = ax2 - 0 . x + c = ax2 + c
f(x) = ax2 + bx + c = ax2 + 0.x + c = ax2 + c
=> f(-x) = f(x)
Ta có: f(1) = a.12 + b.1 + c = a + b + c
f(-1) = a.(-1)2 + b.(-1) + c = a - b + c
f(1) = f(-1) <=> a + b + c = a - b + c <=> b = -b <=> b = 0
=> f(x) = ax2 + c luôn thỏa mãn điều kiện f(-x) = f(x) với mọi x