Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(1\right)=a+b+c+d=a+3a+c+c+d=4a+2c+d\)
\(f\left(-2\right)=-8a+4b-2c+d\)
\(=-8a+4\left(3a+c\right)-2c+d\)
\(=-8a+12a+4c-2c+d\)
\(=4a+2c+d\)
=>f(1)=f(-2)
b: Đặt \(h\left(x\right)=0\)
=>(x-1)(x-4)=0
=>x=1 hoặc x=4
Đặt g(x)=0
\(\Leftrightarrow x^2+5x+1=0\)
\(\text{Δ}=5^2-4\cdot1\cdot1=21>0\)
Do đó PT có 2 nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-5-\sqrt{21}}{2}\\x_2=\dfrac{-5+\sqrt{21}}{2}\end{matrix}\right.\)
=>h(x) và g(x) khôg có nghiệm chung
Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)
TH1: m=3
\(f\left(x\right)=-2\left(3+3\right)\cdot x+3+2=-12x+5\)
Để f(x)<=0 vô nghiệm thì f(x)>0 với mọi x
=>-12x+5>0 với mọi x(vô lý)
=>Loại
TH2: m<>3
\(\text{Δ}=\left(2m+6\right)^2-4\left(3-m\right)\left(m+2\right)\)
\(=4m^2+24m+36+4\left(m^2-m-6\right)\)
\(=8m^2+20m+12\)
\(=4\left(2m^2+5m+3\right)\)
\(=4\left(2m+3\right)\left(m+1\right)\)
Để f(x)<=0 vô nghiệm thì f(x)>0 với mọi x
=>\(\left\{{}\begin{matrix}\left(2m+3\right)\left(m+1\right)< 0\\3-m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}< m< -1\\m< 3\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Mệnh đề đảo là : "Nếu \(f\left(x\right)\) có một nghiệm bằng 1 thì \(a+b+c=0\)". "Điều kiện cần và đủ để \(f\left(x\right)=ax^2+bx+c\) có một nghiệm bằng 1 là \(a+b+c=0\)"
Mệnh đề đảo là “Nếu f(x) có một nghiệm bằng 1 thì a + b + c = 0”.
“Điều kiện cần và đủ f(x) = a x 2 + bx + c có một nghiệm bằng 1 là a + b + c = 0”.
Với x=0 ta có:
0=-4.f(0)
=>f(0)=0
=>0 là 1 nghiệm của f(x)(1)
Với x=4 ta có:
4.f(4-2)=0
<=>4.f(2)=0
<=>f(2)=0
=>2 là 1 nghiệm của f(x)(2)
Từ 1 và 2 =>f(x) luôn có 2 nghiệm là 0 và 2 hay f(x) có ít nhất 2 nghiệm