K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

+TH1 a,b,c<0=>a.c^2+bx^2+c<o(loại)

+TH2 a,b,c>0=>ac^2+bx^2+c>0(loại)

+TH3a=b=c=0=>ac^2+bx^2+c=o

f(0) ⋮ 7 => e ⋮ 7

=> g(x) = ax4 + bx3 + cx2 + dx ⋮ 7 ∀ x nguyên

g(1) = a + b + c + d ⋮ 7

g(-1) = a - b + c - d ⋮ 7

=> \(\left\{{}\begin{matrix}\left(a+b+c+d\right)+\left(a-b+c-d\right)⋮7\\\left(a+b+c+d\right)-\left(a-b+c-d\right)⋮7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2\left(a+c\right)⋮7\\2\left(b+d\right)⋮7\end{matrix}\right.\)

Mà 2 không chia hết cho 7 => \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) (1)

g(2) = 16a + 8b + 4c + 2d ⋮ 7

g(-2) = 16a - 8b + 4c - 2d ⋮ 7

=> \(\left\{{}\begin{matrix}\left(16a+8b+4c+2d\right)+\left(16a-8b+4c-2d\right)⋮7\\\left(16a+8b+4c+2d\right)-\left(16a-8b+4c-2d\right)⋮7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}8\left(4a+c\right)⋮7\\4\left(4b+d\right)⋮7\end{matrix}\right.\)

Mà 8 và 4 không chia hết cho 7

=> \(\left\{{}\begin{matrix}4a+c⋮7\\4b+d⋮7\end{matrix}\right.\) (2)

Từ (1) và (2)

=> \(\left\{{}\begin{matrix}\left(4a+c\right)-\left(a+c\right)⋮7\\\left(4b+d\right)-\left(b+d\right)⋮7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3a⋮7\\3b⋮7\end{matrix}\right.\)

Mà 3 không chia hết cho 7 => \(\left\{{}\begin{matrix}a⋮7\\b⋮7\end{matrix}\right.\)

Lại có: \(\left\{{}\begin{matrix}a+c⋮7\\b+d⋮7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}c⋮7\\d⋮7\end{matrix}\right.\)

Vậy bài toán đã được chứng minh

30 tháng 5 2020

\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên 

\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên 

\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên 

=> 4a có giá trị nguyên 

=> 2b có giá trị nguyên.

24 tháng 6 2016

 với mọi giá trị của x thì ax^2 + bx + c = 0 
nên ta có thể lấy giá trị của x bất kỳ 
với x = 0 => ax^2 + bx + c = 0 <=> c = 0 => ax^2 + bx = 0 
với x = 1 => ax^2 + bx = 0 <=> a + b = 0 (1) 
với x = -1 => ax^2 + bx = 0 <=> a-b = 0 (2) 
từ (1) và (2) => 2a = 0 => a = 0 
=> b = 0 
vậy a = b = c = 0

24 tháng 6 2016

 với mọi giá trị của x thì ax^2 + bx + c = 0 
nên ta có thể lấy giá trị của x bất kỳ 
với x = 0 => ax^2 + bx + c = 0 <=> c = 0 => ax^2 + bx = 0 
với x = 1 => ax^2 + bx = 0 <=> a + b = 0 (1) 
với x = -1 => ax^2 + bx = 0 <=> a-b = 0 (2) 
từ (1) và (2) => 2a = 0 => a = 0 
=> b = 0 
vậy a = b = c = 0

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:Dương...
Đọc tiếp

Bài 1: Tính giá trị của biểu thức: x5 – 2009x4 + 2009x3 – 2009x2 + 2009x – 2010 tại x = 2008.

Bài 2: Tính giá trị biểu thức 2x5 – 5x3 + 4 tại x, y thỏa mãn: (x – 1)20 + (y + 2)30 = 0.

Bài 3: Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.

Bài 4: Tìm m và n (m, n ∈ N*) biết: (-7x4ym).(-5xny4) = 35 = x9y15.

Bài 5: Cho đơn thức (a – 7)x8y10 (với a là hằng số; x và y khác 0). Tìm a để đơn thức:

  1. Dương với mọi x, y khác 0.
  2. Âm với mọi x, y khác 0.

Bài 6: Cho các đa thức A = 5x2 + 6xy – 7y2; B = -9x2 – 8xy + 11y2; C = 6x2 + 2xy – 3y2.

Chứng tỏ rằng: A, B, C không thể cùng có giá trị âm.

Bài 7: Cho ba số: a, b, c thỏa mãn: a + b + c = 0. Chứng minh rằng: ab + 2bc + 3ca ≤ 0.

Bài 8: Chứng minh rằng: (x – y)(x4 + x3y + x2y2 + xy3 + y4) = x5 – y5.

Bài 9: Cho x > y > 1 và x5 + y5 = x – y. Chứng minh rằng: x4 + y4 < 1.

Bài 10: Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số.

Bài 11: Cho đa thức P(x) = ax2 + bx + c. Chứng tỏ rằng nếu 5a + b + 2c = 0 thì P(2).P(-1) ≤ 0.

Bài 12: Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.

Bài 13: Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.

Bài 14: Đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ. Chứng minh rằng: P(x) không thể có nghiệm là số nguyên.

Bài 15: Tìm một số biết rằng ba lần bình phương của nó đúng bằng hai lần lập phương của số đó.

Bài 16: Chứng minh rằng đa thức P(x) = x3 – x + 5 không có nghiệm nguyên.

cần gấp nha các bạn giải giùm mình PLEASE

3
1 tháng 5 2018

Đăng từng bài thoy nha pn!!!

Bài 1:

Có : 2009 = 2008 + 1 = x + 1

Thay 2009 = x + 1 vào biểu thức trên,ta có : 

  x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010

= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)

= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1

= -2

1 tháng 5 2018

mình cũng chơi truy kich

3 tháng 5 2019

giúp mình cái mai mình ktr rồi

3 tháng 5 2019

Bạn tham khảo câu trả lời của anh ali tại đây:

Câu hỏi của Dương Thúy Hiền - Toán lớp 8 - Học toán với OnlineMath