K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

Đặt \(f\left(x\right)=ax^3+bx^2+cx+d\left(a\inℤ^+\right)\)

\(f\left(5\right)=125a+25b+5c+d\)

\(f\left(3\right)=27a+9b+3c+d\)

\(\Rightarrow f\left(5\right)-f\left(3\right)=98a+16b+2c\)

Mà \(f\left(5\right)-f\left(3\right)=2022\) nên \(98a+16b+2c=2022\) 

\(\Leftrightarrow49a+8b+c=1011\)

Lại có \(f\left(7\right)=343a+49b+7c+d\)

\(f\left(1\right)=a+b+c+d\)

\(\Rightarrow f\left(7\right)-f\left(1\right)=342a+48b+6c\) \(=6\left(57a+8b+c\right)\) \(=6\left(8a+1011\right)\) (vì \(49a+8b+c=1011\))

 Mà do \(a\inℤ^+\) nên \(f\left(7\right)-f\left(1\right)\) là hợp số (đpcm)

17 tháng 10 2023

công thức tổng quát: f(x)=x3        sdasdasdadasd

12 tháng 8 2015

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

6 tháng 8 2019

f(x) có nghiệm 

=> \(b^2\ge4c\)

\(f\left(2\right)=4+2b+c=\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+c+1+1+1+1\)

                                        \(\ge9\sqrt[9]{\frac{1}{16}b^4c}\ge9\sqrt[9]{\frac{1}{16}.\left(4c\right)^2.c}=9\sqrt[3]{c}\)(ĐPCM)

Dấu bằng xảy ra khi b=2,c=1

12 tháng 9 2015

thử vào câu hỏi tương tự coi nhìn vào mà làm

25 tháng 7 2016

thay vào mà trinhhs thôi -_-

26 tháng 7 2016

giải hộ ik,, ko pk giải mới up lên chứ pk up lm j @@@

4 tháng 7 2018

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(x-1) cùng tính chẳn lẻ với a+b 
Tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(x-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
Đặt: f(x) = a.xⁿ + b.x^(x-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 

14 tháng 8 2018

Nhận xét: với a, b nguyên , n nguyên dương ta có: 
aⁿ và a cùng tính chẳn, lẻ ; 
với x là số lẻ thì a.xⁿ và a cùng tính chẳn lẻ 
và do đó, với x là số lẻ ta có: 
a.xⁿ + b.x^(n-1) cùng tính chẳn lẻ với a+b 
tổng quát: với x là số nguyên lẻ, n nguyên dương, a, b, c,... nguyên ta có: 
a.xⁿ + b.x^(n-1) +...+ cx cùng tính chẳn lẻ với a+b+..+c 
- - - - - - 
đặt: f(x) = a.xⁿ + b.x^(n-1) + ...+ c.x + d 
có f(0) = d lẻ (do giả thiết) 
f(1) = a+b+..+ c +d lẻ => a+b+..+c chẳn 

với x nguyên tuỳ ý ta có hai trường hợp: 
nếu x chẳn thì: a.xⁿ + b.x^(n-1) +..+cx chẳn => f(x) lẻ (do d lẻ) 
nếu x lẻ thì từ nhận xét trên có: a.xⁿ + b.x^(n-1) +..+cx chẳn (do a+b+..+c chẳn) 
=> f(x) lẻ 

Tóm lại có f(x) là số lẻ với mọi x nguyên => f(x) # 0 với mọi x nguyên 
=> f(x) không có nghiệm nguyên 
~~~~~~~~~~~~