K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(A\left(x\right)+B\left(x\right)\)

\(=-x^3-5x^2+7x+2+x^3+6x^2-3x-7\)

\(=x^2+4x-5\)

\(A\left(x\right)-B\left(x\right)\)

\(=-x^3-5x^2+7x+2-x^3-6x^2+3x+7\)

\(=-2x^3-11x^2+11x+9\)

b) Thay \(x=1\) vào \(x^2+4x-5\), ta được:

\(1^2+4\cdot1-5=1+4-5=0\)

Thay \(x=1\) vào \(A\left(x\right)\), ta được:

\(A\left(x\right)=-1^3-5\cdot1^2+7\cdot1+2=-1-5+7+2=3\)

4 tháng 5 2018

\(g\left(-1\right)=\left(-1\right)^2+a\cdot\left(-1\right)+b=1+\left(-a\right)+b=1-a+b\)

thế a=b+1 vào g(1), ta có:

\(g\left(-1\right)=1-\left(b+1\right)+b=1+b-b-1=0\)

Vậy nếu a=b+1 thì x=-1 là nghiệm của đa thức g(x)

19 tháng 4 2019

a,

*\(P\left(x\right)\) = \(-3x^2+4x-x^3+x^2+3x-1\)

\(P(x)=-3x^2+7x-x^3-1\)

\(P(x)=-x^3-3x^2+7x-1\)

* \(Q(x)=3x^4-x^2+x^3-2x-1-2x^3\)

\(Q(x)=3x^4-x^2-x^3-2x-1\)

\(Q(x)=3x^4-x^3-x^2-1\)

b, \(M(x)=P(x)-Q(x)\)

\(M(x)=-x^3-3x^2+7x-1-3x^4+x^3+x^2+1\)

\(M(x)=-2x^2+7x-3x^4\)

27 tháng 4 2016

a, thu gọn đa thức J 

J(x) =5x^2+4-2+3x^3+x^4+2-x^3+x^2

= 5x^2+x^2+4-2+2+3x^3-x^3+x^4

=6x^2+4+2x^3+x^4

b, Thay :x=3 vào đa thức J(x)

6.3^2+4+2.3^3+3^4

=54+4+54+81

=193

Vậy :x=3 là nghim da thuc J(x)

27 tháng 4 2016

a) j(x) = x4+2x3+6x2+4

b) khi x=3 =>j(x) = 193

vay x=3 k phai la nghiem cua j(x)

muon co nghiem thi j(x) =0

a)cho A(x) =m*32 -2*3=0=>9m-6=0=>9m=6=>m=2/3

b)có B(x)=x2 +2*2*x+4+6

Áp dụng hằng đẳng thức a2 +2ab+b2=(a+b)2

có B(x)=(x+2)2 +6 >0

=>đpcm

1 tháng 5 2017

a)\(A\left(3\right)=m.3^2-2.3=9m-6=0\Rightarrow9m=6\Rightarrow m=\frac{2}{3}\)

b)\(B\left(x\right)=x^2+4x+10=\left(x^2+4x+4\right)+6=\left(x+2\right)^2+6\ge6>0\)

=>đa thức vô nghiệm

Câu 2: 

Theo đề, ta có:

\(\left\{{}\begin{matrix}a-c=3\\f\left(2\right)=0\\f\left(-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(c+3\right)\cdot2^2+b\cdot2+c=0\\\left(c+3\right)\cdot\left(-2\right)^2+b\cdot\left(-2\right)+c=0\\a=c+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(c+3\right)+2b+c=0\\4\left(c+3\right)-2b+c=0\\a=c+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5c+12+2b=0\\5c+12-2b=0\\a=c+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=0\\c=-\dfrac{12}{5}\\a=c+3=-\dfrac{12}{5}+3=\dfrac{3}{5}\end{matrix}\right.\)

1 tháng 4 2017

a) Ta có

x2+x+2=(x2+x+1)+1=(x2+x+1/4+3/4)+1=\(\left(x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\left(\frac{3}{4}+1\right)=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

ta có (x+1/2)2\(\ge0\)( lũy thừa bậc chẵn)

=> Đa thức ở phần a lớn hơn 0 và nó ko có nghiệm

b) Ta có x4\(\ge0\)( lũy thừa bậc chẵn)

3x2\(\ge0\)( lí do tương tự)

=> Đa thức ở phần b lớn hơn 0 và nó ko có nghiệm

1 tháng 4 2017

\(a,x^2+x+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

\(Do\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=> x2+x+2 vô nghiệm

\(b,x^4+2.\frac{3}{2}x^2+\frac{9}{4}+\frac{11}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{11}{4}\)

\(Do\left(x^2+\frac{3}{2}\right)^2\ge0\Rightarrow\left(x^2+\frac{3}{2}\right)^2+\frac{11}{4}>0\)

=>x4+3x2+5 vô nghiệm