Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tính A(x) và B(x) là sao bn??? mk ko hiểu đề
b) Để A(x) chia hết cho B(x)
=> 4x4 - 11x3 + 26x2 - 43x + 26 chia hết cho 4x - 3
4x4 - 3x3 - 8x3 + 6x2 + 20x2 - 15x - 28x + 21 + 5 chia hết cho 4x - 3
x3.(4x - 3) - 2x2.(4x - 3) + 5x.(4x -3) - 7.(4x-3) + 5 chia hết cho 4x - 3
(4x-3).(x3 - 2x2 + 5x - 7) + 5 chia hết cho 4x - 3
mà (4x-3).(x3 - 2x + 5x-7) chia hết cho 4x - 3
=> 5 chia hết cho 4x - 3
=> 4x - 3 thuộc Ư(5)={1;-1;5;-5}
...
bn tự lập bảng xét giá trị nha
a) B = \(x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=1\)
Ap dung dinh li Be du, ta có A chia hết cho B khi số dư = 0.
A = \(f\left(1\right)=1^4-3.1^3+6.1^2-7m+m=0\)
\(\Leftrightarrow m=\dfrac{2}{3}\)
Các câu còn lại đơn giản, áp dụng như câu a là được.
a ) Theo lược đồ hooc - ne
1 1 -3 6 -7+m 1 -2 4 -3+m
Để \(A\) chia hết cho B thì :
\(-3+m=0\Rightarrow m=3\)
Vậy \(m=3\)
Đặt \(A=x^3-13x+m=\left(x^2+4x+3\right).\left(x+p\right)\)
Khi đó \(\left(x^2+4x+3\right)\left(x+p\right)=x^3+x^2\left(p+4\right)+x\left(4p+3\right)+3p\)
Sử dụng hệ số bất định được
\(\hept{\begin{cases}p+4=0\\4p+3=-13\\m=3p\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}p=-4\\m=-12\end{cases}}\)
Vậy m = -12
Câu còn lại tương tự.
a, Gọi thương của đa thức là Q(x) ta có:
A= x^3 - 13x + m = (x^2 + 4x + 3).Q(x)
Với x=-1 ta có :
A= (-1)^3 + 13.1 +m = 0
= -1 + 13 + m = 0
=> m= 0 + 1 -13
= -12
Vậy m=-12 (Ở đây mình chọn x= -1 là vì -1 là ngiệm của đa thức chia để VP bằng không và nếu thay x vào cả 2 về thì biểu thức A có giá trị không đổi tương tự nếu đa thức chia có 2 nghiệm thì bạn thay x bằng các nghiệm đó theo 2 trường hợp và dễ dàng tìm ẩn số)
b,Giai tương tự
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
B1:
a, \(4x^2+y\left(y-4x\right)-9\)
\(=4x^2+y^2-4xy-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y+3\right)\left(x-y-3\right)\)
1.
b) \(a^2-b^2+a-b\)
\(=\left(a^2-b^2\right)+\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b+1\right)\)
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888