Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Đặt a/x là m; b/y là n; c/z là p, ta có: m + n + p = 2; 1/m + 1/n + 1/p = 0. Tìm m2 + n2 + p2 ?
Từ 1/m + 1/n + 1/p = 0
=> mnp(1/m + 1/n + 1/p) = 0
<=> mn + np + mp = 0
Mặt khác, ta có (m + n + p)2 = m2 + n2 + p2 + 2(mp + np + mp) = 4
Mà mn + np + mp = 0 => m2 + n2 + p2 + 0 = 4
Trả lời: Vậy a2/x2 + b2/y2 + c2/z2 = 4
\(f\left(1\right)=\left(2+3-4\right)^{2016}-\left(1+1\right)^5=1^{2016}-32=-31\)
Đáp số : -31
tổng các hệ số f(x) sau khi khai triển và rút gọn chính là giá trị của f(x) tại x=1
A=F(1)=\(\left(2.1^5+3.1-4\right)^{2016}-\left(1^7+1^8\right)^5\)
A=-31
vậy tổng các hệ số sau khi khai triển và rút gọn là -31
\(1.\) Với mọi \(x+y+z=0\) \(\left(1\right)\), ta có: \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\) \(\left(2\right)\)
Thật vậy, từ \(\left(1\right)\) \(\Rightarrow\) \(x=-\left(y+z\right)\)
\(\Leftrightarrow\) \(x^2=\left[-\left(y+z\right)\right]^2\)
\(\Leftrightarrow\) \(x^2=y^2+2yz+z^2\)
\(\Leftrightarrow\) \(x^2-y^2-z^2=2yz\)
\(\Leftrightarrow\) \(\left(x^2-y^2-z^2\right)^2=4y^2z^2\)
\(\Leftrightarrow\) \(x^4+y^4+z^4-2x^2y^2+2y^2z^2-2x^2z^2=4y^2z^2\)
\(\Leftrightarrow\) \(x^4+y^4+z^4=4y^2z^2+2x^2y^2-2y^2z^2+2x^2z^2\)
\(\Leftrightarrow\) \(x^4+y^4+z^4=2\left(x^2y^2+y^2z^2+x^2z^2\right)\) \(\left(3\right)\)
Cộng \(x^4+y^4+z^4\) vào hai vế của đẳng thức \(\left(3\right)\), ta được đẳng thức \(\left(2\right)\)
Vậy, đẳng thức \(\left(2\right)\) đã được chứng minh với mọi \(x+y+z=0\)
Khi đó, \(M=2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2=1\)
Do đó, giá trị \(M=1\)
-Charlotte-
Nhờ mọi người ghi giúp mình cách giải nhé! Cảm ơn mọi người nhiều.
Lưu ý rằng (x- y)k (k là số nguyên)luôn có hệ số bằng 0 (Bạn nào không biết thì lập tam giác paxcal nhé)
=> (x2- 2xy+ y2)7= ((x-y)2)7= (x- y)14
=> Đa thức trên có tổng các hệ số =0
a) Theo đề bài, ta có:
\(x^4+x^3+2x^2-7x-5=\left(x^2+2x+5\right)\left(x^2+bx+c\right)\)
\(\Rightarrow x^4+x^3+2x^2-7x-5=x^4+\left(b+2\right)x^3+\left(2b+c+5\right)x^2+\left(5b+2c\right)x+5c\)
Suy ra: \(\left\{\begin{matrix}b+2=1\\2b+c+5=2\\5b+2c=-7\\5c=-5\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}b=-1\\c=-1\end{matrix}\right.\)
b) Theo đề bài, ta có:
\(x^4-2x^3+2x^2-2x+a=\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)
\(\Rightarrow x^4-2x^3+2x^2-2x+a=x^4+\left(b-2\right)x^3+\left(c-2b+1\right)x^2+\left(b-2c\right)x+c\)
Suy ra: \(\left\{\begin{matrix}b-2=-2\\c-2b+1=2\\b-2c=-2\\c=a\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=1\\b=0\\c=1\end{matrix}\right.\)
a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2
1)
a) \(-7x\left(3x-2\right)\)
\(=-21x^2+14x\)
b) \(87^2+26.87+13^2\)
\(=87^2+2.87.13+13^2\)
\(=\left(87+13\right)^2\)
\(=100^2\)
\(=10000\)
2)
a) \(x^2-25\)
\(=x^2-5^2\)
\(=\left(x-5\right)\left(x+5\right)\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..........
3)
a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)
Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)
b)
Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)