Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì G là trọng tâm của △ABC
\(\Rightarrow AG=\frac{2}{3}AM\) \(\Rightarrow GM=\frac{1}{3}AM\) Mà MD = MG \(\Rightarrow GM+MD=\frac{1}{3}AM+\frac{1}{3}AM\)\(\Rightarrow GD=\frac{2}{3}AM\)
=> AG = GD
=> G là trung điểm của AD
=> CG là trung tuyến của tam giác ACD
b, Xét △BGM và △CDM
Có: GM = DM (gt)
BMG = CMD (2 góc đối đỉnh)
BM = CM (gt)
=> △BGM = △CDM (c.g.c)
=> GBM = DCM (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> BG // CD (dhnb)
A B C M D G N
Xet tam giac ABC ta có
G la trong tâm (gt)
->BG la dương trung tuyến
mà BG cắt AC tai N (gt)
nên BN là đường trung tuyến
--> N la trung điểm AC
Xét tam giac ANG và tam giac NCD ta có
ND=NG (gt) ; goc ANG=goc CND (đối đỉnh) ; AN=NC ( N là trung điểm AC)
--< tam giac ANG=tam giac CND (c-g-c)
--> AG=CD ( 2 cạnh tương ứng)
ta có : G là trọng tâm tam giac ABC (gt)
-> AG=\(\frac{2}{3}AM\)-> \(\frac{AG}{2}=\frac{AM}{3}=\frac{AM-AG}{3-2}=\frac{MG}{1}\)
--> AG=2MG
ma AG -=CD 9cmt)
nên CD=2MG
a) Xét ΔAMD và ΔCMB có:
AM=MC(gt)
\(\widehat{AMB}=\widehat{CMB}\) (đối đỉnh)
DM=MB(gt)
=> ΔAMD=ΔCMB(c.g.c)
b)Ví ΔAMD = ΔCMB(cmt)
=> \(\widehat{ADM}=\widehat{CBM}\) . Mà hai góc này ở vị trí soletrong
=> AD//BC
c, Xét ΔANE và ΔBNC có:
EN=NC(gt)
\(\widehat{ANE}=\widehat{BNC}\) (đối đỉnh)
AN=BN(gt)
=>ΔANE=ΔBNC(c.g.c)
=>AE=BC (1)
Mà ΔAMD=ΔCMB(cmt)
=>AD=BC (2)
Từ (1)(2) suy ra: AE=AD
=>E là trung điểm của DE
a/ Xét tam giác AMD và tam giác CMB có:
\(\begin{cases}gcAMD=gcCMB\\AM=MC\\DM=BM\end{cases}\)
=> AMD=CMB
b/
Vì tam giác AMD = tam giác CMD nên góc ADM = góc MBC hay ADB=DBC
Mà vị trí 2 góc trên là so le trong nên AD//BC (ĐPCM)
c/
Xét tam giác ENA và CNB có:
\(\begin{cases}AN=BN\\gcENA=gcCNB\\EN=CN\end{cases}\)
=> tam giác ENA = tam giác CNB
=> EA = BC (1)
Mà tam giác AMD= tam giác CMB nên AD = BC (2)
Từ (1) và(2) ta được : EA=AD
Hay A là trung điểm của ED. (ĐPCM)
Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)
a) Xét tam giác EFA và tam giác CAB, có:
AE = AC ( giả thiết)
AF = AB (giả thiết)
Góc EAF = góc BAC (2 góc đối đỉnh)
=> ΔEAF = ΔCAB (c.g.c)
b) Vì ΔEFA = ΔCAB (Theo a)
=> Góc ABC = Góc EFA (cặp góc tương ứng)
=> EF = BC (cặp cạnh tương ứng) (1)
Mà EK = KF = 1/2 EF (2)
BD = DC = 1/2 BC (3)
Từ (1), (2) và (3)
=> KF = BD
Xét ΔKFB và ΔFBD, có
Cạnh BF chung
KF = BD (chứng minh trên)
Góc EFB = Góc ABC (chứng minh trên)
=> ΔKFB =ΔDBF (c.g.c)
=> KB = FD (cặp cạnh tương ứng)
Ta có hình vẽ sau:
A H D B C 1 2 M N
a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)
Xét ΔABH và ΔDBH có:
BH là cạnh chung
\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)
AH = DH (gt)
=> ΔABH = ΔDBH (c.g.c) (đpcm)
b) Vì ΔABH = ΔDBH (ý a)
=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)
= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)
c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)
Xét ΔABC và ΔDBC có:
BC là cạnh chung
\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)
AB = DB (cm tên)
=> ΔABC = ΔDBC(c.g.c)
=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)
d) Vì ΔABH = ΔDBH (ý a)
=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB
=> NB = ND = \(\frac{1}{2}\)DB
=> N là trung điểm của BD(đpcm)