Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số hạng đầu và công bội của cấp số nhân là: \(u_1;q\).
a) Theo tính chất của cấp số nhân ta có:
\(\left\{{}\begin{matrix}u_1q^4-u_1=15\\u_1q^3-u_1q=6\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1\left(q^4-1\right)}{u_1\left(q^3-q\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{\left(q^2-1\right)\left(q^2+1\right)}{q\left(q^2-1\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{q^2+1}{q}=\dfrac{15}{6}\)
\(\Leftrightarrow6\left(q^2+1\right)=15q\)\(\Leftrightarrow6q^2-15q+6=0\)\(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\).
Với \(q=2\).
Suy ra: \(u_1\left(q^4-q\right)=15\Rightarrow u_1=\dfrac{15}{q^4-q}=\dfrac{15}{14}\).
Với \(q=\dfrac{1}{2}\)
Suy ra \(u_1=\dfrac{15}{q^4-q}=\dfrac{-240}{7}\).
Gọi số hạng đầu và công sai của cấp số cộng lần lượt là: u1 và d.
Ta có:
{u1+2u5=0S4=14⇔{u1+2.(u1+4d)=0[2u1+3d].42=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3.
b) Gọi số hạng đầu và công sai của cấp số cộng làn lượt là \(u_1\) d. Ta có:
\(\left\{{}\begin{matrix}u_1+3d=10\\u_1+6d=19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\).
c) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\).
d) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+6d-\left(u_1+2d\right)=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left(u_1+2\right)\left(u_1+12\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\u^2_1+14u_1-51=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=\\\left[{}\begin{matrix}u_1=3\\u_1=-17\end{matrix}\right.\end{matrix}\right.\)
Vậy có hai cấp số cộng thỏa mãn là: \(\left\{{}\begin{matrix}d=2\\u_1=3\end{matrix}\right.\) và \(\left\{{}\begin{matrix}d=2\\u_1=-17\end{matrix}\right.\).
a)
{u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2){u6=192u7=384⇔{u1.q5=192(1)u1.q6=384(2)
Lấy (2) chia (1): q = 2 thế vào (1):
(1) ⇔ u1.25 = 192 ⇔ u1 = 6
Vậy u1 = 6 và q = 2
b) Ta có:
{u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2){u4−u2=72u5−u3=144⇔{u1.q3−u1.q=72u1.q4−u1.q2=144⇔{u1.q(q2−1)=72(1)u1.q2(q2−1)=144(2)
Lấy 2 chia 1: q = 2 thế vào (1)
(1) ⇔2u1(4 – 1) = 72 ⇔ u1 = 12
Vậy u1 = 12 và q = 2
c) Ta có:
{u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2){u2+u5−u4=10u3+u6−u5=20⇔{u1.q+u1.q4−u1.q3=10u1.q2(q2−1)=144(2)⇔{u1q(1+q3−q2)=10(1)u1q(1+q3−q2)=20(2)
Lấy (2) chia (1): q = 2 thế vào (1)
(1) ⇔ 2u1 (1 + 8 – 4) = 10 ⇔ u1 = 1
Vậy u1 = 1 và q = 2
Theo tính chất của cấp số cộng, ta có \(u_1+u_4=u_2+u_3\)
Do đó : \(\Leftrightarrow\left(x-u_1\right)\left(x-u_2\right)\left(x-u_3\right)\left(x-u_4\right)=\left[x^2-\left(u_1-u_4\right)x+u_1u_4\right]\left[x^2-\left(u_2-u_3\right)x+u_2u_3\right]\)(*)
Đặt \(t=x^2-\left(u_1+u_4\right)x=x^2-\left(u_2+u_3\right)x\)
Khi đó (*) \(\Leftrightarrow f\left(t\right)=\left(t+u_1u_4\right)\left(t+u_2u_3\right)+9=t^2+\left(u_1u_4+u_2u_3\right)t+u_1u_4u_2u_3+9\)
Với \(\Delta_t=\left(u_1u_4+u_2u_3\right)^2-4u_1u_4u_2u_3-36=\left(u_1u_4+u_2u_3\right)^2-36\)
Rõ ràng \(\left|u_1u_4-u_2u_3\right|\le6\Rightarrow\Delta_t<0\leftrightarrow f\left(t\right)>0\)với mọi t
<=> A có nghĩa với mọi x
a) Áp dụng công thức tính số hạng tổng quát, ta có:
u3 = 3 = u1.q2 và u5 = 27 = u1.q4.
Vì 27 = (u1q2).q2 = 3.q2 nên q2 = 9 hay q = ±3.
Thay q2 = 9 vào công thức chứa u3, ta có u1 = .
- Nếu q = 3, ta có cấp số nhân: , 1, 3, 9, 27.
- Nếu q = -3, ta có cáp số nhân: , -1, 3, -9, 27.
b) Áp dụng công thức tính số hạng tỏng quát từ giả thiết, ta có:
hay
Từ hệ trên ta được: 50.q = 25 => q = .
Và u1 = .
Ta có cấp số nhân .
\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)
\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)
\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)
\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)
\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)