Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: |q|=1/2<1
b: Sn=U1+u2+...+un
\(S_n=\dfrac{1\left(1-\left(\dfrac{1}{2}\right)^n\right)}{1-\dfrac{1}{2}}=2\left(1-\left(\dfrac{1}{2}\right)^n\right)\)
=>\(lim\left(S_n\right)=2\)
Chọn A
Phương pháp:
Sử dụng công thức tính tổng của n số hạng đầu của cấp số nhân có số hạng đầu tiên
là u 1 và công bội q là S n = u 1 ( 1 - q n ) 1 - q
Cách giải:
S n = u 1 ( 1 - q n ) 1 - q ⇔ S n = u 1 ( q n - 1 ) q - 1
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
Chọn C.
Phương pháp
Công thức tổng quát của CSC có số hạng đầu là u1 và công sai d là:
u n = u 1 + ( n - 1 ) d
Tìm công sai d rồi suy ra u3
\(u_1+u_4=u_2+u_3\) , mà \(u_1+u_2+u_3+u_4=20\)
\(\Rightarrow u_1+u_4=u_2+u_3=10\)
\(\Rightarrow2u_1+3d=10\)
\(\dfrac{u_1+u_4}{u_1u_4}+\dfrac{u_2+u_3}{u_2u_3}=\dfrac{25}{24}\Leftrightarrow10\left(\dfrac{1}{u_1u_4}+\dfrac{1}{u_2u_3}\right)=\dfrac{25}{24}\)
\(\Leftrightarrow\dfrac{1}{u_1\left(u_1+3d\right)}+\dfrac{1}{\left(u_1+d\right)\left(u_1+2d\right)}=\dfrac{5}{48}\)
\(\Leftrightarrow\dfrac{1}{u_1\left(10-u_1\right)}+\dfrac{9}{\left(10+u_1\right)\left(20-u_1\right)}=\dfrac{5}{48}\)
\(\Leftrightarrow\dfrac{5\left(u_1-8\right)\left(u_1-2\right)\left(u_1^2-10u_1-120\right)}{48u_1\left(u_1-20\right)\left(u_1^2-10\right)}=0\)
Nhiều nghiệm quá
1: \(Q=\dfrac{ab\left(a-b\right)}{ab}\cdot\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)
2: \(=\dfrac{-1+\sqrt{5}-\sqrt{5}+\sqrt{9}-...-\sqrt{2001}+\sqrt{2005}}{4}\)
\(=\dfrac{\sqrt{2005}-1}{4}\)
Công sai \(d=\dfrac{u_{2020}-u_1}{2019}=\dfrac{3333}{673}\).
Ta có \(d.S_n=\dfrac{u_2-u_1}{\sqrt{u_1}+\sqrt{u_2}}+\dfrac{u_3-u_2}{\sqrt{u_2}+\sqrt{u_3}}+...+\dfrac{u_{2020}-u_{2019}}{\sqrt{u_{2019}}+\sqrt{u_{2020}}}=\sqrt{u_2}-\sqrt{u_1}+...+\sqrt{u_{2020}}-\sqrt{u_{2019}}=\sqrt{u_{2020}}-\sqrt{u_1}=100-1=99\)
\(\Rightarrow S_n=\dfrac{99}{d}=\dfrac{2019}{101}\).