Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình sửa đề nhé~
Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)
\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2xz\ge0\forall x;y;z\)
\(\Leftrightarrow2.\left(x^2+y^2+z^2\right)\ge2xy+2yz+2xz\forall x;y;z\)
\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2xy+2yz+2xz\forall x;y;z\)
\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\forall x;y;z\)
Mà \(3.\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)
\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.\Leftrightarrow x=y=z\)
Có: \(x^{2018}+y^{2018}+z^{2018}=27^{673}\)
\(\Leftrightarrow3.x^{2018}=27^{673}\)
\(\Leftrightarrow x^{2018}=3^{2018}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
đến đây bạn tự làm nốt nhé
Theo BĐT Cosi ta có: \(\hept{\begin{cases}\frac{x^4+y^4}{2}\ge\sqrt{x^4\cdot y^4}=x^2y^2\\\frac{y^4+z^4}{2}\ge\sqrt{y^4\cdot z^4}=y^2z^2\\\frac{z^4+x^4}{2}\ge\sqrt{z^4\cdot x^4}=x^2z^2\end{cases}\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2}\)
chứng minh tương tự: \(x^2y^2+y^2z^2+z^2x^2\ge xy^2z+xyz^2+x^2yz\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge3xyz\)(do x+y+z=3)
Do đó: \(x^4+y^4+z^4\ge3xyz\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^4;y^4=z^4;z^4=x^4\\x^2y^2=y^2z^2;y^2z^2=z^2x^2;z^2x^2=x^2y^2\end{cases}\Leftrightarrow x=y=z}\)(1)
mà x+y+z=3 (2)
Từ (1) và (2) => 3x=3 => x=1 => y=z=1
=> \(x^{2018}+y^{2019}+x^{2020}=1+1+1=3\)
bạn chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/60436537466.html
Sửa đề: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1+z^2-4z+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)
=>x=y=1 và z=2
\(A=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}\)
\(=\left(1-1\right)^{2018}+\left(1-1\right)^{2019}+\left(2-1\right)^{2020}\)
=1
Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được
Ta có: \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6\)
<=> \(\left(x^2+\frac{1}{x^2}-2\right)+\left(y^2+\frac{1}{y^2}-2\right)+\left(z^2+\frac{1}{z^2}-2\right)=0\)
<=> \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2+\left(z-\frac{1}{z}\right)^2=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\\z-\frac{1}{z}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\\z=\frac{1}{z}\end{cases}}\)
<=> \(\hept{\begin{cases}x^2=1\\y^2=1\\z^2=1\end{cases}}\)
<=> x = y = z = \(\pm\)1
Với x = y = z = 1 => P = 12018 + 12019 + 12020 = 3
x = y = z = -1 => P = (-1)2018 + (-1)2019 + (-1)2020 = 1
Vậy ...
\(x^{2018}+1+...+1"\ge2018\sqrt[2018]{x^{2018}.1.111}=2018x.\) " 2017 số 1 nha
tương tự với y
\(y^{2018}+1+..+1\ge2018y\)
\(z^{2018}+1+1..+1\ge2018z\)
+ vế với vế ta được
\(x^{2018}+y^{2018}+z^{2018}+6051\ge2018\left(x+y+z\right)\)
có x^2018+..+z^2018=3 suy ra
\(6054\ge2018\left(x+y+z\right)\Leftrightarrow\frac{6054}{2018}\ge\left(x+y+z\right)\Leftrightarrow\left(x+y+z\right)\le3\)
max của x+y+z là 3 dấu = khi x=y=z=1
Ta có:
\(\left(x^{2018}+1008\right)+\left(y^{2018}+1008\right)+\left(z^{2018}+1008\right)\ge1009\left(\sqrt[1009]{x^{2018}}+\sqrt[1009]{y^{2018}}+\sqrt[1009]{z^{2018}}\right)\)
\(=1009\left(x^2+y^2+z^2\right)\)
\(\Rightarrow x^2+y^2+z^2\le\frac{1008.3+3}{1009}=3\)