Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c>0\end{matrix}\right.\)
Và \(\dfrac{ab}{\sqrt{a^2+b^2+2c^2}}+\dfrac{bc}{\sqrt{b^2+c^2+2a^2}}+\dfrac{ca}{\sqrt{c^2+a^2+2b^2}}\le\dfrac{1}{2}\)
Ta có:\(\dfrac{ab}{\sqrt{a^2+b^2+2c^2}}=\dfrac{2ab}{\sqrt{\left(1+1+2\right)\left(a^2+b^2+2c^2\right)}}\)
\(\le\dfrac{2ab}{a+b+2c}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{ab+bc}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{bc+ac}{a+b}\right)\)
\(=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)
Dấu "=" khi \(a=b=c=\dfrac{1}{3}\Rightarrow x=y=z=\dfrac{1}{9}\)
Lời giải:
Đặt \((\frac{1}{x}; \frac{1}{y}; \frac{1}{z})=(a,b,c)\). Bài toán trở thành:
Cho $a,b,c>0$ thỏa mãn $a+b+c=1$. CMR:
\(\frac{\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}}{\sqrt{abc}}\geq \sqrt{\frac{1}{abc}}+\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}(*)\)
----------------------------------
Do $a+b+c=1$ nên ta có:
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}=\sqrt{a(a+b+c)+bc}+\sqrt{b(a+b+c)}+\sqrt{c(a+b+c)+ab}\)
\(=\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}+\sqrt{(c+a)(c+b)}\)
Mà áp dụng BĐT Bunhiacopxky:
\(\sqrt{(a+b)(a+c)}+\sqrt{(b+c)(b+a)}+\sqrt{(c+a)(c+b)}\geq \sqrt{(a+\sqrt{bc})^2}+\sqrt{(b+\sqrt{ac})^2}+\sqrt{(c+\sqrt{ab})^2}\)
\(=a+\sqrt{bc}+b+\sqrt{ac}+c+\sqrt{ab}=a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
Vậy:\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\geq 1+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow \frac{\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}}{\sqrt{abc}}\geq \sqrt{\frac{1}{abc}}+\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)
$(*)$ được cm. BĐT hoàn thành. Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$ hay $x=y=z=3$
Ta có BĐT:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow6\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)+2016\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow7.\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le2016\)
Xét \(P=\frac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\frac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\frac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
\(P^2=\left(\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2x^2+y^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2y^2+z^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2z^2+x^2}}\right)^2\)
Áp dụng BĐT Bunhiacopxki ta có:
\(P^2\le\left(\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right)\left(\left(\frac{1}{\sqrt{2x^2+y^2}}\right)^2+\left(\frac{1}{\sqrt{2y^2+z^2}}\right)^2+\left(\frac{1}{\sqrt{2z^2+x^2}}\right)^2\right)\)
\(\Leftrightarrow P^2\le\frac{1}{2x^2+y^2}+\frac{1}{2y^2+z^2}+\frac{1}{2z^2+x^2}\)
Mặt khác ta có:
\(\frac{1}{2x^2+y^2}=\frac{1}{x^2+x^2+y^2}\le\frac{1}{9}\left(\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\frac{1}{2y^2+z^2}\le\frac{1}{9}\left(\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(\frac{1}{2z^2+x^2}\le\frac{1}{9}\left(\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}\right)\)
\(\Rightarrow P^2\le\frac{1}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le\frac{1}{3}.2016=672\)
\(\Rightarrow P\le4\sqrt{42}\)
Dấu '=' xảy ra khi \(x=y=z=\sqrt{\frac{1}{672}}\)
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\dfrac{\sqrt{3xy}}{xy}=\dfrac{\sqrt{3}}{\sqrt{xy}}\)
Tương tự \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\ge\dfrac{\sqrt{3}}{\sqrt{yz}};\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge\dfrac{\sqrt{3}}{\sqrt{xz}}\)
\(\Rightarrow VT\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3}.\dfrac{3}{\sqrt[3]{xyz}}=3\sqrt{3}\)
Dấu "=" xảy ra khi x=y=z=1
Áp dụng BĐT AM-GM, Ta có
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)
Mà \(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)
\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)
\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)
Đặt \(\left(a,b,c\right)=\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\).
Xét 4 số m, n, p, q. Ta sẽ chứng minh \(\left(m+n+p+q\right)^2\le4\left(m^2+n^2+p^2+q^2\right)\) (*)
Thật vậy:
(*) \(\Leftrightarrow2\left(mn+np+pq+qm+mp+nq\right)\le3\left(m^2+n^2+p^2+q^2\right)\)
\(\Leftrightarrow\left(m-n\right)^2+\left(n-p\right)^2+\left(p-q\right)^2+\left(q-m\right)^2+\left(m-p\right)^2+\left(n-q\right)^2\ge0\) (luôn đúng).
Từ đó: \(\left(\sqrt{x}+\sqrt{y}+2\sqrt{z}\right)^2=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{z}\right)^2\le4\left(x+y+z+z\right)=4\left(x+y+2z\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+2\sqrt{z}\le2\sqrt{x+y+2z}\)
\(\Leftrightarrow\sqrt{\frac{xy}{x+y+2z}}=\frac{\sqrt{xy}}{\sqrt{x+y+2z}}\le\frac{2\sqrt{x}\sqrt{y}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}=\frac{2ab}{a+b+2c}\le\frac{1}{2}ab\frac{4}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{2}ab\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự, ta có:
\(\sum\sqrt{\frac{xy}{x+y+2z}}\le\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)=\frac{1}{2}\sum a=\frac{1}{2}\)
C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)
\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)
\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)
Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);
\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)