Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c1: phân tích từng cái
c2, nhân x cho (1) y cho 2
sau đs dùng bunhia
từ x+y=1
=> x^2-xy+y^2...
Áp dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)( tự c/m)
Dấu " = " xảy ra <=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Áp dụng: \(\frac{x}{1+y^2}+\frac{y}{1+x^2}=\frac{x^2}{x+xy^2}+\frac{y^2}{y+x^2y}\ge\frac{\left(x+y\right)^2}{x+y+x^2y+xy^2}=\frac{2^2}{2+xy\left(x+y\right)}=\frac{4}{2+2xy}\)
Áp dụng BĐT \(\frac{\left(x+y\right)^2}{2}\ge2xy\)( tự c/m)
Dấu " = " xảy ra <=> x=y
Áp dụng: \(\frac{x}{1+y^2}+\frac{y}{1+x^2}\ge\frac{4}{2+2xy}\ge\frac{4}{2+\frac{\left(x+y\right)^2}{2}}=\frac{4}{2+2}=1\)
Dấu " = " xảy ra <=> x=y=1
Một lời giải rất quen thuộc đó là dùng cô si ngược dấu:
\(x.\frac{1}{1+y^2}=x\left(1-\frac{y^2}{1+y^2}\right)\ge x\left(1-\frac{y^2}{2y}\right)=x-\frac{xy}{2}\)
Tương tự,ta cũng có: \(\frac{y}{1+x^2}\ge y-\frac{xy}{2}\)
Cộng theo vế hai BĐT trên và áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\),ta được:
\(VT\ge\left(x+y\right)-xy\ge2-\frac{\left(x+y\right)^2}{4}=2-1=1^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi x = y = 1
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
7a có: \(\frac{1}{2}=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow x+y\le1\)
Áp dụng BD7 Cauchy-SChwarz 7a có:
\(V7=\frac{x}{y+1}+\frac{y}{x+1}=x-\frac{xy}{y+1}+y-\frac{xy}{x+1}\)
\(\le x+y-\frac{\left(x^2+y^2\right)}{2}\left(\frac{1}{y+1}+\frac{1}{x+1}\right)\)
\(\le1-\frac{\frac{1}{2}}{2}\cdot\frac{4}{1+2}=\frac{2}{3}=VP\)
Dấu "='' khi \(x=y=\frac{1}{4}\)