Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c là độ dài ba cạnh của tam giác thỏa mãn (1+b/a)(1+c/b)(1+a/c)=8.Chứng minh tam giác đó đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b
(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c
(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a
=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)
=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8
Dấu = xảy ra <=> a = b = c <=> Tam giác đều
\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
Vậy tam giác đó là tam giác đều
\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\left(1\right)\)
vi \(\left(a-b\right)^2\ge0\)
\(\left(a-c\right)^2\ge0\)
\(\left(b-c\right)^2\ge0\)
de \(\left(1\right)\) xay ra thi \(\hept{\begin{cases}a-b=0\\a-c=0\\b-c=0\end{cases}\Leftrightarrow a=b=c}\)
\(\Leftrightarrow\)do la tam giac deu
GIẢI
Giả sử : \(a\ge b\ge c>0\) thì \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{a}{b+c}=\frac{a}{b+c}\)
\(\frac{b}{c+a}\le\frac{b}{b+c}\)
\(\frac{c}{a+b}\le\frac{c}{b+c}\)
Cộng vế theo vế ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}\)
Hay : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2\)
Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2\)
Chúc bạn học tốt !!!
GIẢI
Giả sử : a\ge b\ge c>0a≥b≥c>0 thì a+b\ge a+c\ge b+ca+b≥a+c≥b+c
Ta có : \frac{a}{b+c}=\frac{a}{b+c}b+ca=b+ca
\frac{b}{c+a}\le\frac{b}{b+c}c+ab≤b+cb
\frac{c}{a+b}\le\frac{c}{b+c}a+bc≤b+cc
Cộng vế theo vế ta được :
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}b+ca+c+ab+c+bc≤b+ca+b+c
Hay : \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2b+ca+c+ab+c+bc≤b+ca+1<1+1=2
Vậy \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2b+ca+c+ab+c+bc<2
A B C D 1 2 c a b
*) Nếu A = 2 góc B thì a2 = b2 + bc.
Kẻ AD là phân giác của góc A => góc A1 = A2 = A/ 2
=> góc A1 = A2 = góc B
Xét tam giác ABC và tam giác DAC có: góc C chung ; góc A2 = góc B
=> tam giác ABC đồng dạng với tam giác DAC ( g - g)
=> \(\frac{DC}{AC}=\frac{AC}{BC}\Rightarrow\frac{DC}{b}=\frac{b}{a}\) (1)
Do AD là p/g của góc BAC nên \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}\) (theo tính chất của dãy tỉ số bằng nhau)
\(\Rightarrow\frac{DC}{b}=\frac{a}{b+c}\) (2)
Từ (1)(2) => \(\frac{a}{b+c}=\frac{b}{a}\Rightarrow a^2=b\left(b+c\right)=b^2+bc\)
*) Ngược lại: Nếu a2 = b2 + bc => góc A = 2 . góc B
Kẻ AD là phân giác của góc A => \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}=\frac{a}{b+c}\)(3)
\(a^2=b^2+bc=b\left(b+c\right)\Rightarrow\frac{b}{a}=\frac{a}{b+c}\Rightarrow\frac{AC}{BC}=\frac{a}{b+c}\)(4)
từ (3)(4) => \(\frac{DC}{AC}=\frac{AC}{BC}\) mà có góc ACB chung
=> tam giác DAC đồng dạng với tam giác ABC (c - g - c)
=> góc A2 = góc B
mà góc A= 2. góc A2 nên góc A = 2. góc B
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)
\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)
Ta có
\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)
\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)
\(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)
\(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)
\(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)
Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)
Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)
Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)
\(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)
\(\Rightarrow a=b=c\)
Vậy a, b, c là độ dài ba cạnh của một tam giác đều
câu a:
-Áp dụng bất đẳng thức trg tam giác =>
a+b>c
a+c>b
b+c>a
=> nếu bằng 2 ngược vs bất đẳng thức (a+b+c=4)
vậy a,b,c < 2