K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2021

câu a:
-Áp dụng bất đẳng thức trg tam giác =>
a+b>c
a+c>b
b+c>a
=> nếu bằng 2 ngược vs bất đẳng thức (a+b+c=4)
vậy a,b,c < 2

23 tháng 2 2015

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b

(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c

(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a

=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)

=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8

Dấu = xảy ra <=> a = b = c <=> Tam giác đều

4 tháng 12 2016

\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

Vậy tam giác đó là tam giác đều 

4 tháng 12 2016

\(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\left(1\right)\)

vi   \(\left(a-b\right)^2\ge0\)

 \(\left(a-c\right)^2\ge0\)

\(\left(b-c\right)^2\ge0\)

de \(\left(1\right)\) xay ra thi \(\hept{\begin{cases}a-b=0\\a-c=0\\b-c=0\end{cases}\Leftrightarrow a=b=c}\)

         \(\Leftrightarrow\)do la tam giac deu

21 tháng 9 2019

GIẢI

 Giả sử : \(a\ge b\ge c>0\) thì \(a+b\ge a+c\ge b+c\)

 Ta có : \(\frac{a}{b+c}=\frac{a}{b+c}\)

          \(\frac{b}{c+a}\le\frac{b}{b+c}\)

           \(\frac{c}{a+b}\le\frac{c}{b+c}\)

Cộng vế theo vế ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}\)

Hay : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2\)

Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2\)

Chúc bạn học tốt !!!

21 tháng 9 2019

GIẢI

 Giả sử : a\ge b\ge c&gt;0abc>0 thì a+b\ge a+c\ge b+ca+ba+cb+c

 Ta có : \frac{a}{b+c}=\frac{a}{b+c}b+ca​=b+ca

          \frac{b}{c+a}\le\frac{b}{b+c}c+ab​≤b+cb

           \frac{c}{a+b}\le\frac{c}{b+c}a+bc​≤b+cc

Cộng vế theo vế ta được :
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}b+ca​+c+ab​+c+bc​≤b+ca+b+c

Hay : \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1&lt; 1+1=2b+ca​+c+ab​+c+bc​≤b+ca​+1<1+1=2

Vậy \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}&lt; 2b+ca​+c+ab​+c+bc​<2

23 tháng 3 2017

sai đề bài òi bạn điều đó là đúng mà

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

25 tháng 12 2016

cấp cứu

25 tháng 12 2016

3) tổng bằng 0

còn câu 1,2 đâng suy nghĩ

21 tháng 4 2015

A B C D 1 2 c a b

*) Nếu A = 2 góc B thì a2 = b2 + bc.

Kẻ AD là phân giác của góc A => góc A1 = A2 = A/ 2

=> góc  A1 = A2 = góc B

Xét tam giác ABC và tam giác DAC có: góc C chung ; góc A2 = góc B

=> tam giác ABC đồng dạng với tam giác DAC ( g - g)

=> \(\frac{DC}{AC}=\frac{AC}{BC}\Rightarrow\frac{DC}{b}=\frac{b}{a}\) (1)

Do AD là p/g của góc BAC nên \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}\) (theo tính chất của dãy tỉ số bằng nhau)

\(\Rightarrow\frac{DC}{b}=\frac{a}{b+c}\) (2)

Từ (1)(2) => \(\frac{a}{b+c}=\frac{b}{a}\Rightarrow a^2=b\left(b+c\right)=b^2+bc\)

*) Ngược lại: Nếu a2 = b2 + bc => góc A = 2 . góc B

Kẻ AD là phân giác của góc A => \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}=\frac{a}{b+c}\)(3)

\(a^2=b^2+bc=b\left(b+c\right)\Rightarrow\frac{b}{a}=\frac{a}{b+c}\Rightarrow\frac{AC}{BC}=\frac{a}{b+c}\)(4)

từ (3)(4) => \(\frac{DC}{AC}=\frac{AC}{BC}\) mà có góc ACB chung 

=> tam giác DAC đồng dạng với tam giác ABC (c - g - c)

=> góc A2 = góc B 

mà góc A= 2. góc A2 nên góc A = 2. góc B

5 tháng 11 2019

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)

\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)

Ta có

\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)

\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều

7 tháng 11 2019

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

         \(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)

        \(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

        \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)

        \(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)

        \(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)

        \(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)

Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)

Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)

Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)

                        \(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)

                        \(\Rightarrow a=b=c\)

Vậy a, b, c là độ dài ba cạnh của một tam giác đều