K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

áp dụng bđt svacxơ, ta có 

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

dấu = xảy ra <=>\(\frac{x^2}{a}=\frac{y^2}{b}\)

nên \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=2.\frac{x^{2n}}{a^n}\)

,mặt khác, ta có \(\frac{2}{\left(a+b\right)^n}=2.\frac{1}{\left(a+b\right)^n}=2.\frac{\left(x^2+y^2\right)^n}{\left(a+b\right)^n}=2.\frac{\left(2.x^2\right)^n}{\left(2.a\right)^n}=2.\frac{2^2.x^{2n}}{2^2.a^n}=2.\frac{x^{2n}}{a^n}\)

từ 2 điều trên => \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n}\)

27 tháng 4 2020

Ta có: \(\hept{\begin{cases}x^2+y^2=1\\\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\end{cases}}\)

\(\Leftrightarrow b\left(a+b\right)x^4+a\left(a+b\right)y^4=ab\left(x^4+2x^2y^2+y^4\right)\)

\(\Leftrightarrow b^2x^4+a^2y^4-2abx^2y^2=0\)

\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\)

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2016}}{a^{1008}}=\frac{y^{2016}}{b^{1008}}=\frac{1}{\left(a+b\right)^{1008}}\)

\(\Rightarrow\frac{x^{2016}}{a^{1008}}+\frac{y^{2016}}{b^{21008}}=\frac{2}{\left(a+b\right)^{1008}}\)

27 tháng 4 2020

Em vào câu hỏi tương tự tham khảo: 

Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)

Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)

<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)

<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)

<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)

<=> \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)

Khi đó: \(\frac{x^{2016}}{a^{1008}}+\frac{y^{2016}}{b^{1008}}=2\frac{x^{2016}}{a^{1008}}=\frac{2}{\left(a+b\right)^{1008}}\)

22 tháng 12 2015

giải chi tiết hộ mk nhá

 

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

1 tháng 5 2019

1) Ta có ĐK: 0 < a,b,c < 1

\(\sqrt{\frac{a}{1-a}}=\frac{a}{\sqrt{a\left(1-a\right)}}\ge2a\) (BĐT AM-GM cho 2 số a và 1-a)

Tương tự, ta có \(\sqrt{\frac{b}{1-b}}=\frac{b}{\sqrt{b\left(1-b\right)}}\ge2b\)\(\sqrt{\frac{c}{1-c}}=\frac{c}{\sqrt{c\left(1-c\right)}}\ge2c\)

\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge2\left(a+b+c\right)=2\)(do a+b+c=1)

Dấu đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = \(\frac{1}{2}\) (không thoả mãn điều kiện a+b+c=1)

Dấu đẳng thức trên không xảy ra được. Vậy ta có bất đẳng thức\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)

6 tháng 1 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b\right)\left(\dfrac{x^4}{a}+\dfrac{y^4}{b}\right)\ge\left(x^2+y^2\right)^2=1\)

\(\Rightarrow VT=\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{1}{a+b}=VP\)

Dấu "=" khi \(\dfrac{x^2}{a}=\dfrac{y^2}{b}\)\(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\Rightarrow a+b=\dfrac{a}{x^2}\Rightarrow\left(a+b\right)^n=\dfrac{a^n}{x^{2n}}\)

Xét \(VT\) của biểu thức cần c.m:

\(VT=\left(\dfrac{x^2}{a}\right)^n+\left(\dfrac{y^2}{b}\right)^n=2\cdot\dfrac{x^{2n}}{a^n}\)

\(VP=\dfrac{2}{\left(a+b\right)^n}=\dfrac{2}{\dfrac{a^n}{x^{2n}}}=2\cdot\dfrac{x^{2n}}{a^n}\)

Vậy có ĐPCM