Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : m\n = m.q\n.q , p\q = p.n\q.n
Vì m\n < p\q suy ra mq\nq < np\nq
Vì n>0 , q>0 suy ra n.q > 0
Từ đó suy ra mq < np ( đây là điều phải chứng minh ).
bạn xem lại đề:
Có \(\frac{3}{2}<\frac{7}{3}\) nhưng \(\frac{3}{2}>\frac{3+7}{2+7}=\frac{10}{9}\)
Mk làm như thê snayf mà ko bít đúng ko? các bn cho ý kiến nha!
TA có:
a < b => a + a < a + b < b + b
Hay 2.a <a+b<2b
Vậy: a/m < a+b/2m < b/m
\(P=a.x^m+b.\frac{1}{x^n}\)
Áp dụng BĐT Co-si cho 2 số dương \(a.x^m\)và \(b.\frac{1}{x^n}\), ta có :
\(a.x^m+b.\frac{1}{x^n}\ge2\sqrt{\frac{ab.x^m}{x^n}}\)
\(\Rightarrow a.x^m+b.\frac{1}{x^n}\ge2\sqrt{ab.x^{m-n}}\)
Vì \(2\sqrt{ab.x^{m-n}}\)Luôn \(\ge0\)\(\Rightarrow\)\(P_{min}=0\Leftrightarrow2\sqrt{ab.x^{m-n}}=0\)
Mà \(a,b>0\Rightarrow x^{m-n}=0\Leftrightarrow m-n=0\Rightarrow m=n\)
Vậy \(P_{min}=0\Leftrightarrow m=n\)