K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

A=\(\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)

A=\(3-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)

Mà :\(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{x}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

=> A < 2                                        (1)

Mặt khác A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)

Mà \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

=>A > 1                                       (2)

Từ (1) và (2)=> 1 < A < 2 <=> A không phải là số nguyên

1 tháng 12 2015

A= x+y-y/x+y + y+z-z/y+z + z+x-x/x+z

A=3 - ( x/x+z + y/x+y + z/y+z)

Mà:x/x+z>x/x+y+z,x/y+z>y/x+y+z;z/x+z>z/x+y+z

suy ra :A<2     (1)

Mặt khác A=x/x+y + y/y+z + z/x+z

Mà x/x+y>x/x+y+z;y/y+z>y/x+y+z;z/x+z>z/x+y+z

suy ra A=1        (2)

Từ (1) và (2) suy ra 1<A<2 suy ra A ko phải là số nguyên

Với x, y, z nguyên dương 

Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

          \(\frac{y}{y+z}>\frac{y}{x+y+z}\)

          \(\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1\)(1)

Mặt khác \(\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

           \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)

           \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)(2)

Từ (1) và (2) => dpcm

14 tháng 1 2018

Có : x/x+y ; y/y+z ; z/z+x đều > 0

=> x/z+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1 (1)

Lại có : x,y,z > 0

=> 0 < x/x+y ; y/y+z ; z/z+x < 1

=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = x+z+y+x+z+y/x+y+z = 2 (2)

Từ (1) và (2) => ĐPCM

Tk mk nha

21 tháng 2 2021

Ta có:

 x/x+y + y/y+z + z/z+x = 1+ y+ 1+z+ 1+x= 3+x+y+z

 Do, x,y,z là các số nguyên dương nên 3+x+y+z> 3 >1

25 tháng 7 2018

Đặt \(\hept{\begin{cases}2x+y+z=4a\\2y+x+z=4b\\2z+x+y=4c\end{cases}\Rightarrow}\hept{\begin{cases}x=3a-b-c\\y=3b-c-a\\z=3c-a-b\end{cases}}\)thay vào biểu thức đó

\(\Rightarrow\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\)

\(=\frac{3a-b-c}{4a}+\frac{3b-c-a}{4b}+\frac{3c-a-b}{4c}\)

\(=\frac{3}{4}-\frac{b-c}{4a}+\frac{3}{4}-\frac{c-a}{4b}+\frac{3}{4}-\frac{a-b}{4c}\)

\(=\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\)

Áp dụng BĐT sau: \(\frac{a}{b}+\frac{b}{a}\ge2\Rightarrow\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\ge6\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\ge\frac{6}{4}\)

\(\Leftrightarrow\frac{9}{4}-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right)\le\frac{3}{4}\)

Từ đó ta có: \(\frac{x}{2x+y+z}+\frac{y}{2y+x+z}+\frac{z}{2z+x+y}\le\frac{3}{4}\)(đpcm).

Dấu "=" xảy ra <=> x=y=z.

19 tháng 7 2020

Theo Cauchy Schwarz:

\(\frac{x}{2x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự:

\(\frac{y}{2y+z+x}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right);\frac{z}{2z+y+x}\le\frac{1}{4}\left(\frac{z}{z+y}+\frac{z}{z+x}\right)\)

Cộng lại:

\(D\le\frac{3}{4}\left(đpcm\right)\)

11 tháng 8 2017

1 <  x /x+y + y /y+x+ z /z+x < 2

=> 1 < (x + y + z) / (2x + 2y + 2z)  < 2

=> 1 <  ( x + y + z) / 2 x ( x+ y +z)  < 2

=>  1 < ( 1 /2 + 2 - 1) < 2

Vậy 1< 1,5 < 2 => 1 <  x /x+y + y /y+x+ z /z+x < 2

nhớ tích cho mk nhé! 

14 tháng 1 2018

\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}< 2\)

\(=>1< \left(x+y+z\right):2\left(x+y+z\right)< 2\)

\(=>1< \frac{1}{2}+2-1< 2\)

\(=>1< 1,5< 2\)

\(=>1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)