Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b+c+d-(a+b+c+d) = a(a-1)+b(b-1)+c(c-1)+d(d-1) Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp => a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2 => a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2 Hay a+b+c+d-(a+b+c+d) chia hết cho 2 <=> 2( a+b) - (a+b+c+d) chia hết cho 2 (Vì a+b=c+d) Vì 2( a+b) chia hết cho 2, a+b+c+d-(a+b+c+d) chia hết cho 2 => a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương) Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).
Ta có:
a^2+b^2=c^2+d^2 => a^2+b^2+c^2+d^2=2.(a^2+b^2)
=>a^2+b^2+c^2+d^2 chia hết cho 2 (1)
Lại có: a^2+b^2+c^2+d^2 - (a+b+c+d) = (a^2-a) + (b^2-b) + (c^2-c) + (d^2 - d)
= a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1)
Do a.(a-1), b.(b-1), c,(c-1), d.(d-1) là các tích của 2 Số liên tiếp
=> 4 tích a.(a-1), b.(b-1), c,(c-1), d.(d-1) đều chia hết cho 2
=>a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1) chia hết cho 2 <=> a^2+b^2+c^2+d^2 - (a+b+c+d) chia hết cho 2 (2)
Từ (1) và (2) có: a+b+c+d chia hết cho 2
Mà a,b,c,d là các số nguyên dương => a+b+c+d >2
Vậy a+b+c+d là hợp số
Ta có: a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d)
= a(a-1)+b(b-1)+c(c-1)+d(d-1)
Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp
=> a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2
=> a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2
Hay a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
<=> 2( a\(^2\)+b\(^2\)) - (a+b+c+d) chia hết cho 2 (Vì a\(^2\)+b\(^2\)=c\(^2\)+d\(^2\))
Vì 2( a\(^2\)+b\(^2\)) chia hết cho 2, a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
=> a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn
Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương)
Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).
Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:
a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).
Thay vào điều kiện ta được:
qa1b = qc1d
\(\Leftrightarrow\)a1b = c1d
\(\Rightarrow\) d\(⋮\)a1
\(\Rightarrow\)d = d1a1
Thế ngược lại ta được: b = d1c1
Từ đây ta có:
A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n
= (a1 n + c1 n)(q n + d1 n)
Vậy A là hợp số
\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)
\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)
\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)
\(D< 4+2.\left(1-\frac{1}{2015}\right)\)
\(D< 6\)
mink chỉ làm được vậy thôi bạn ạ, sorry
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
\(a^2+b^2=c^2+d^2\Leftrightarrow a^2-c^2=d^2-b^2\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)
mà a+b=c+d => a-c=d-b => \(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)
TH1: a-c=0 hay a=c, kết hợp với a+b=c+d => b=d
=>a2014+b2014=c2014+d2014
TH2: a-c\(\ne\)0 hay a\(\ne\)c, từ \(\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)=>a+c=d+b
mà a+b=c+d => a+c+a+b=d+b+c+d => 2a=2d => a=d => b=c
=>a2014+b2014=c2014+d2014
Từ 2 trường hợp trên => đpcm