Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chỉ cần thuộc các bđt cơ bản là được.
Áp dụng bđt Bunyakovsky dạng phân thức, vì a,b,c dương
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c=1\)
Áp dụng bđt cô si
\(a^2+b^2+c^2\le3\sqrt[3]{a^2\cdot b^2\cdot c^2}\)
mà \(a^2\cdot b^2\cdot c^2\le\frac{\left(a+b+c\right)^3}{3}=\frac{1}{3}\)
nên \(a^2+b^2+c^2\le\) 1
Dấu bằng xảy ra khi a=b=c = 1/3
Đặt \(P=\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{c^4}{\left(c+2\right)\left(a+2\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{a^2}{\left(a+2\right)\left(b+2\right)}.\frac{a+2}{27}.\frac{b+2}{27}.\frac{1}{9}}=\frac{4a}{9}\)(1)
\(\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{b^2}{\left(b+2\right)\left(c+2\right)}.\frac{b+2}{27}.\frac{c+2}{27}.\frac{1}{9}}=\frac{4b}{9}\)(2)
\(\frac{c^4}{\left(c+2\right)\left(a+2\right)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{c^2}{\left(c+2\right)\left(a+2\right)}.\frac{c+2}{27}.\frac{a+2}{27}.\frac{1}{9}}=\frac{4c}{9}\)(3)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:
\(P+\frac{2\left(a+b+c\right)+12}{27}+\frac{3}{9}\ge\frac{4\left(a+b+c\right)}{9}\)
\(\Leftrightarrow P+\frac{2}{3}+\frac{3}{9}\ge\frac{4}{3}\)
\(\Leftrightarrow P\ge\frac{1}{3}\left(đpcm\right)\)Dấu"="xảy ra \(\Leftrightarrow a=b=c=1\)
\(P=\frac{2}{3xy}+\frac{3}{\sqrt{3\left(1+y\right)}}\ge\frac{2}{3y\left(3-y\right)}+\frac{6}{y+4}\)
\(\Rightarrow P\ge2\left(\frac{-9y^2+28y+4}{3\left(-y^3-y^2+12y\right)}\right)=2\left(\frac{2\left(-y^3-y^2+12y\right)+2y^3-7y^2+4y+4}{3\left(-y^3-y^2+12y\right)}\right)\)
\(P\ge2\left(\frac{2}{3}+\frac{\left(y-2\right)^2\left(2y+1\right)}{3y\left(3-y\right)\left(y+4\right)}\right)\ge\frac{4}{3}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
@Nguyễn Việt Lâm duyệt bài giúp em với ạ @Phạm Minh Quang nick đây
BĐT Bu nhi a cốp xki :
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow\left(x.1+y.1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
\(\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}\)Nguyễn Thị Thanh Trang
\(P=2018xy+2019\left(x+y\right)\le2018.\frac{x^2+y^2}{2}+2019\sqrt{2\left(x^2+y^2\right)}=2018.\frac{1}{2}+2019\sqrt{2.1}=1009+2019\sqrt{2}\)
Vậy GTLN của P là \(1009+2019\sqrt{2}\) . Dấu \("="\) xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
\(P=\frac{3}{a}+\frac{3}{4}a+\frac{9}{2b}+\frac{1}{2}b+\frac{4}{c}+\frac{1}{4}c+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge3\cdot2\sqrt{\frac{1}{a}\cdot\frac{a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{1}{4}\cdot20\)
\(\Rightarrow P\ge3+3+2+5=13\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)
Theo viet ta có
\(x_1+x_2=2\)
Vì x1 là nghiệm của phương trình
=> \(x_1^2=2x_1-m\)
Khi đó
\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)
\(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))
Chắc là \(a\ne0\)
Pt hoành độ giao điểm: \(ax^2+bx+c=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)
Do tọa độ đỉnh là (1;8) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\\dfrac{4ac-b^2}{4a}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4ac-\left(-2a\right)^2=32a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+8\end{matrix}\right.\)
Mà \(MN=4\Leftrightarrow\left|x_1-x_2\right|=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=16\)
\(\Leftrightarrow\left(\dfrac{-2a}{a}\right)^2-4\dfrac{a+8}{a}=16\)
\(\Leftrightarrow a=-2\Rightarrow b=4\Rightarrow c=6\)
Bài 4:
Áp dụng bất đẳng thức Cauchy-shwarz dạng engel ta có:
\(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ca}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{9}=1\)
Dấu " = " xảy ra khi a = b = c = 1
\(\Rightarrowđpcm\)
Bài 1:
Ta có:
\(a^2+b^2-\frac{(a+b)^2}{2}=\frac{2(a^2+b^2)-(a+b)^2}{2}=\frac{(a-b)^2}{2}\geq 0\)
\(\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}=\frac{2^2}{2}=2\)
(đpcm)
Dấu "=" xảy ra khi $a=b=1$