Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x,y,z\inℤ\)
nen tu gia thiet suy ra
\(x^2+4y^2+z^2-2xy-2y+2z\le-1\)
\(\Leftrightarrow\left(x-y\right)^2+\left(z+1\right)^2+\left(y-1\right)^2+2y^2\le1\)
mat khac
\(\hept{\begin{cases}\left(y-1\right)^2+2y^2>0\\\left(x-y\right)^2+\left(z+1\right)^2\ge0\end{cases}}\)
nen \(\left(x-y\right)^2+\left(z+1\right)^2+\left(y-1\right)^2+2y^2=1\)
den day ban lap bang cac gia tri se tim duoc \(\left(x,y,z\right)=\left(0,0,-1\right)\)
x^3+y^3 = 2.(z^3+t^3)
<=> x^3+y^3+z^3+t^3 = 3.(z^2+t^3) chia hết cho 3
Xét : x^3-x = x.(x^2-1) = (x-1).x.(x+1) chia hết cho 3 ( vì là tích 3 số nguyên liên tiếp )
Tương tự : y^3-y , z^3-z và t^3-t đều chia hết cho 3
=> (x^3+y^3+z^3+t^3)-(x+y+z+t) chia hết cho 3
Mà x^3+y^3+z^3+t^3 chia hết cho 3
=> x+y+z+t chia hết cho 3
Tk mk nha
ê hiếu t có 1 cách nhưng mà bị ngược dấu :)) có cần t làm ko :))))
x3 + y3 = 2 ( z3 + t3 )
\(\Rightarrow\)x3 + y3 + z3 + t3 = 3 ( z3 + t3 ) \(⋮\)3
Áp dụng bài toán : n \(\in\)Z thì n3 - n \(⋮\)3
Ta có : ( x3 - x ) + ( y3 - y ) + ( z3 - z ) + ( t3 - t ) \(⋮\)3
hay ( x3 + y3 + z3 + t3 ) - ( x + y + z + t ) \(⋮\)3
Mà x3 + y3 + z3 + t3 \(⋮\)3 nên x + y + z + t \(⋮\)3
Đề bài sai ngay từ giả thiết x,y,z nguyên dương.
Rõ ràng khi đó x,y,z > 0 => \(xy+yz+zx>0\)(đẳng thức không xảy ra)
Vậy đề đúng phải là x,y,z nguyên dương thỏa mãn \(xy+yz+zx=1\)
Khi đó ta giải như sau :
\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)
\(y^2+1=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=z^2+xy+yz+zx=\left(z+x\right)\left(z+y\right)\)
\(\Rightarrow A=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\) là bình phương của một số nguyên.
Đặt \(x=\frac{a}{d},y=\frac{b}{d},z=\frac{c}{d}\) với \(a,b,c,d\in Z,D>0\) và \(\left(a,b,c,d\right)=1\)
Ta có : \(x+y^2+z^2=\frac{da+b^2+c^2}{d^2}\) theo giả thiết,suy ra \(ad+b^2+c^2\) chia hết cho \(d^2\).Chứng minh tương tự : \(db+a^2+c^2\) và \(dc+a^2+b^2\)chia hết cho \(d^2\) hay \(a^2+c^2,c^2+b^2,a^2+b^2⋮d\) . Do đó :
\(2a^2=\left(a^2+b^2\right)+\left(a^2+c^2\right)-\left(b^2+c^2\right)⋮d\)
Tương tự,ta cũng có : 2b^2;2c^2 chia hết cho d.
* TH1 : Nếu \(d\) có ước nguyên tố lẻ là p thì do \(2a^2,2b^2,2c^2⋮d\)nên a\(a,b,c⋮p\Rightarrow\left(a,b,c,d\right)>p>1\left(\text{vô lý}\right)\)=> d phải là lũy thừa của 2 (1)
* TH2 : Nếu d chia hết cho 4 thì do \(2a^2,2b^2,2c^2⋮4\Rightarrow a,b,c\) chẵn, do đó \(\left(a,b,c,d\right)\ge2>1\left(\text{vô lý}\right)\) (2)
Từ (1) và (2) ta suy ra d = 1 hoặc d = 2
* Nếu d = 1 => x = a \(\in Z\Rightarrow2x\in Z\)
* Nếu d = 2 thì x= =a/2 nên 2x = a \(\in Z\)
Hoán vị vòng quanh x,y,z ta đều được \(2x,2y,2z\in Z\) (đpcm)