Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(18\ge x^2+y^2+z^2+x+y+z\ge\frac{1}{3}\left(x+y+z\right)^2+x+y+z\)
\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-54\le0\)
\(\Leftrightarrow\left(x+y+z+9\right)\left(x+y+z-6\right)\le0\)
\(\Leftrightarrow x+y+z-6\le0\)
\(\Leftrightarrow x+y+z\le6\)
Do đó:
\(P\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{2.6+3}=\frac{3}{5}\)
Dấu "=" xảy ra khi \(x=y=z=2\)
x^2+x+y^2+y+z^2+z<=18 suy ra (x+y+z)^2/3+x+y+z<=18
Đặt x+y+z=t thì t^2/3+t-18<=0 suy ra t^2+3t-54<=0>>>(t+9)(t-6)<=0>>>t-<=0>>>t<=6
P>=(1+1+1)^2/2x+2y+2z+3(BĐT Cauchuy-Swartch)=9/2(x+y+z)+3>=9/2.6+3=9/15=3/5
Dấu = khi x=y=z=2(tính dấu = của BĐT Cauchuy-Swartch nhé)
giống cách mình,mà đó là schwarts mà Hoàng Minh Hoàng
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
ta có
\(0\le\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\left(\forall x,y,z>0\right)\)
\(\Leftrightarrow2xy+2yz+2zx\le2\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)(1)
dấu = xảy ra khi
\(x=y=z=0\)
theo giả thiết ta có
\(x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)\le18\)
\(\Leftrightarrow x^2+y^2+z^2\le18-\left(x+y+z\right)\left(2\right)\)
từ (1) zà (2) suy ra
\(\left(x+y+z\right)^2\le54-3\left(x+y+z\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-54\le0\)
\(\Leftrightarrow\left(x+y+z-6\right)\left(x+y+z+9\right)\le0\)
\(\Leftrightarrow0< x+y+z\le6\left(do\left(x+y+z>0;9>0\right)\right)\)
áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có
\(P=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{2.6+3}=\frac{3}{5}\)
Dấu = xảy ra khi zà chỉ khi
\(\hept{\begin{cases}x+y+1=y+z+1=z+x+1\\x+y+z=6\end{cases}=>x=y=z=2}\)
zậy MinP= 3/5 khi x=y=z=2
Ta có : x(x + 1) + y (y+1 ) + z(z + 1) \(\le18\)
<=> x2 + y2 + z2 + ( x + y + z ) \(\le18\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
=> 54 \(\ge\)( x + y+z)2 + 3(x + y + z)
<=> -9 \(\le\)x + y + z \(\le\)6
=> 0 \(\le\)x+y+z \(\le\)6
\(\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\)
\(\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\)
\(\frac{1}{z+x+1}+\frac{z+x+1}{25}\ge\frac{2}{5}\)
=> \(P+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\)
=> P \(\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)
Dấu " =" xảy ra khi :
\(\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)
Vậy GTNN của P là \(\frac{3}{5}\)khi x = y =z =2
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\\ \)
\(\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}\) tương tự với y,z
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
=> ta đi tìm GTNN của (..)\(A=\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
đặt x+1=a;y+1=b;z+1=c nội suy cho đỡ đau đầu a+b+c=4
\(B=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(a+b+c\ge3\sqrt[3]{abc}\)(*)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\)(*)
(*).(**)\(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{\left(a+b+c\right)}\)
\(\Rightarrow B\ge\frac{9}{4}\Rightarrow A\ge\frac{9}{4}\Rightarrow P\le3-\frac{9}{4}=\frac{3}{4}\)
DS: \(P_{max}=\frac{3}{4}\) đẳng thức khi a=b=c=> x=y=z=1/3