Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT phụ:\(\frac{m^2}{n}+\frac{p^2}{q}\ge\frac{\left(m+p\right)^2}{n+q}\) với n,p dương;m,p thực bất kỳ
Áp dụng:
\(RHS\ge\frac{\left(1+1+2+4\right)^2}{x+y+z+t}=\frac{64}{1}=64\)
Bài này áp dụng BĐT này nhé , với x,y > 0 ta có :
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( Cách chứng minh thì chuyển vế quy đồng nhé )
Áp dụng vào bài toán ta có :
\(\frac{1}{2x+y+z}=\frac{1}{4}\left(\frac{4}{\left(x+y\right)+\left(z+x\right)}\right)\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{z+x}\right)=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{z+x}\right)\)
\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)
Tương tự ta có :
\(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
Do đó : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(x+y+z\right)=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\) (đpcm)
Ta có: \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)
\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)
Cộng vế theo vế có: \(VT\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)
Ta có: \(A=\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)
\(A>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1>\frac{9}{10}\)
\(A< \frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}+\frac{t+z}{x+y+z+t}=2< \frac{9}{4}\)
Vậy: \(\frac{9}{10}< A< \frac{9}{4}\)
bạn girl làm đúng rồi , giống ý tưởng của mình là đánh giá dãy trên nhỏ hơn 1 và lớn hơn 2
Nhưng bạn nên đánh giá rõ từng phân số nhé , không nên làm tắt như bài của bạn ấy :)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{x}{1+y+xz}=\frac{x\left(x^2+y+\frac{z}{x}\right)}{\left(1+y+xz\right)\left(x^2+y+\frac{z}{x}\right)}\le\frac{x^3+xy+z}{\left(x+y+z\right)^2}\)
\(\le\frac{x+y+z}{\left(x+y+z\right)}=\frac{1}{x+y+z}\)
Tương tự ta cũng có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z};\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)
Cộng theo vế ta có: \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{1+1+1}{x+y+z}=\frac{3}{x+y+z}\)
Với x,y,z > 0
Xét : (1/x + 1/y + 1/z).(x+y+z)
>=3 \(\sqrt[3]{\frac{1}{xyz}}\). 3\(\sqrt[3]{xyz}\) = 9
=> 1/x + 1/y + 1/z >= 9/x+y+z = 9/1 = 9
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z=1/3
Tk mk nha
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)(đúng với a, b, c dương)
Áp dụng BĐT trên ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)
Vì x+y+z=1
=>\(\frac{1}{x}=1+\frac{y}{x}+\frac{z}{x}\)
\(\frac{1}{y}=1+\frac{x}{y}+\frac{z}{y}\)
\(\frac{1}{z}=1+\frac{x}{z}+\frac{y}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\left(1+\frac{y}{x}+\frac{z}{x}\right)+\left(1+\frac{x}{y}+\frac{z}{y}\right)+\left(1+\frac{x}{z}+\frac{y}{z}\right)\)
\(=\left(1+1+1\right)+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)
\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)
Ta có: a,b,c là các số dương nên theo bất đẳng thức Cô-Si:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)
Vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3+2+2+2=3+6=9\) (đpcm)
Ta có ;\(x+y+z=1\) \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\left(1+1+1\right)^2=9\)(áp dụng bất đẳng thức Bunhiacopxki)
Vậy : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)
Áp dụng BĐ Svac-xơ, ta có
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(ĐPCM\right)\)
^_^
Áp dụng bđt Cauchy schwarz:
=> 1/x+1/y+4/z+16/t >= [(1+1+2+4)^2] / x+y+z+t=8^2/(x+y+z+t)=64/1=64
=> đpcm.
Áp dụng BĐT Svac - xơ:
\(\frac{1}{x}+\frac{1}{y}+\frac{4}{z}+\frac{16}{t}\ge\frac{\left(1+1+2+4\right)^2}{x+y+z+t}=\frac{64}{1}=64\)
(Dấu "="\(\Leftrightarrow x=y=\frac{1}{22};z=\frac{2}{11};t=\frac{8}{11}\))