K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 6 2020

Lời giải:

Do $a+b+c=6; a^4+b^4+c^4=6abc$

$\Rightarrow a^4+b^4+c^4=abc(a+b+c)$

$\Leftrightarrow 2a^4+2b^4+2c^4-2abc(a+b+c)=0$

$\Leftrightarrow (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2+(ab-bc)^2+(bc-ac)^2+(ac-ab)^2=0$

$\Rightarrow a^2-b^2=b^2-c^2=c^2-a^2=ab-bc=bc-ac=ac-ab=0$

$\Rightarrow a=b=c$

Mà $a+b+c=6$ nên $a=b=c=2$

$\Rightarrow a^{10}+b^{10}+c^{10}=3.a^{10}=3.2^{10}$

29 tháng 8 2016

Từ giả thiết đề bài ta có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
                                        \(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0.\)
Có: \(a^2+b^2+c^2=1\Rightarrow\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ đó ta có: \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0.\)
Dấu bằng xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0.\)
Kết hợp với điều kiện : \(a^2+b^2+c^2=1\)và \(a^3+b^3+c^3=1\)ta tìm được bộ ba số: a = 1; b = 0; c = 0 hoặc a= 0; b = 1; c = 0 hoặc a = 0; b = 0; c = 1.
Từ đó tìm ra S = 1 .

29 tháng 8 2016

THEO MÌNH a = 1    b = 0    c = 0 hoặc là a = 0     b = 1    c = 0

\(\Rightarrow\)S = 1      mình đã rất mỏi tay nên ko diễn giải dc  

FC : ĐÃ RẤT CỐ GẮNG

12 tháng 1 2019

Tối nay nhé

12 tháng 1 2019

bớt cái thái độ vô học nhé!

7 tháng 11 2020

cho xin dấu = để làm cái :D lười tìm dấu = quá

17 tháng 4 2016

a2+b2=a3+b3=1 

suy ra a = 1 hoặc b = 1

suy ra a4+b4cũng =1

17 tháng 4 2016

bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé

28 tháng 2 2018

Xét : a^3/a^2+b^2

= (a^3+ab^2)/a^2+b^2 - ab^2/a^2+b^2

= a - ab^2/a^2+b^2

>= a - ab^2/2ab

  = a - b/2

Tương tự : b^3/b^2+c^2 >= b  - c/2 và c^3/c^2+a^2 >= c - a/2

=> P >= a+b+c-(a+b+c)/2 = a+b+c/2 = 3/2

Dấu "=" xảy ra <=> a=b=c=1

Vậy GTNN của P = 3/2 <=> a=b=c=1

Tk mk nha

24 tháng 11 2017

fkfkbang14

20 tháng 2 2017

Đặt \(f\left(x\right)=x^2\) và \(a\ge b\ge c\)

Do đó, \(f\) là một hàm lồi và \(\left(4,2,0\right)›\left(a,b,c\right)\)

Vậy áp dụng BĐT Karamata ta có:

\(Σ\left(a^2+ab\right)=a^2+b^2+c^2+\frac{36-a^2-b^2-c^2}{2}\)

\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+18\le\frac{1}{2}\left(4^2+2^2+0^2\right)+18=28\)

Dấu "=" khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)