Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết đề bài ta có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0.\)
Có: \(a^2+b^2+c^2=1\Rightarrow\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ đó ta có: \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0.\)
Dấu bằng xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0.\)
Kết hợp với điều kiện : \(a^2+b^2+c^2=1\)và \(a^3+b^3+c^3=1\)ta tìm được bộ ba số: a = 1; b = 0; c = 0 hoặc a= 0; b = 1; c = 0 hoặc a = 0; b = 0; c = 1.
Từ đó tìm ra S = 1 .
THEO MÌNH a = 1 b = 0 c = 0 hoặc là a = 0 b = 1 c = 0
\(\Rightarrow\)S = 1 mình đã rất mỏi tay nên ko diễn giải dc
FC : ĐÃ RẤT CỐ GẮNG
a2+b2=a3+b3=1
suy ra a = 1 hoặc b = 1
suy ra a4+b4cũng =1
bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé
Xét : a^3/a^2+b^2
= (a^3+ab^2)/a^2+b^2 - ab^2/a^2+b^2
= a - ab^2/a^2+b^2
>= a - ab^2/2ab
= a - b/2
Tương tự : b^3/b^2+c^2 >= b - c/2 và c^3/c^2+a^2 >= c - a/2
=> P >= a+b+c-(a+b+c)/2 = a+b+c/2 = 3/2
Dấu "=" xảy ra <=> a=b=c=1
Vậy GTNN của P = 3/2 <=> a=b=c=1
Tk mk nha
Đặt \(f\left(x\right)=x^2\) và \(a\ge b\ge c\)
Do đó, \(f\) là một hàm lồi và \(\left(4,2,0\right)›\left(a,b,c\right)\)
Vậy áp dụng BĐT Karamata ta có:
\(Σ\left(a^2+ab\right)=a^2+b^2+c^2+\frac{36-a^2-b^2-c^2}{2}\)
\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+18\le\frac{1}{2}\left(4^2+2^2+0^2\right)+18=28\)
Dấu "=" khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
Lời giải:
Do $a+b+c=6; a^4+b^4+c^4=6abc$
$\Rightarrow a^4+b^4+c^4=abc(a+b+c)$
$\Leftrightarrow 2a^4+2b^4+2c^4-2abc(a+b+c)=0$
$\Leftrightarrow (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2+(ab-bc)^2+(bc-ac)^2+(ac-ab)^2=0$
$\Rightarrow a^2-b^2=b^2-c^2=c^2-a^2=ab-bc=bc-ac=ac-ab=0$
$\Rightarrow a=b=c$
Mà $a+b+c=6$ nên $a=b=c=2$
$\Rightarrow a^{10}+b^{10}+c^{10}=3.a^{10}=3.2^{10}$