K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

Có: \(a^3+b^3=c^3\Leftrightarrow\left(\frac{a}{c}\right)^3+\left(\frac{b}{c}\right)^3=1.\)
Đặt : \(\frac{a}{c}=x;\frac{b}{c}=y\). Suy ra \(0< x< 1;0< y< 1\).
Vì vậy: \(x^{2010}< x^3;y^{2010}< y^3.\)
Từ đó: \(x^{2010}+y^{2010}< x^3+y^3< 1\).
Suy ra: \(\left(\frac{a}{c}\right)^{2010}+\left(\frac{b}{c}\right)^{2010}< 1\)hay: \(a^{2010}+b^{2010}< c^{2010}.\)
 

21 tháng 9 2016

a^2010+b^2001<c^2010

4 tháng 7 2019

ĐẦU TIÊN TA BÌNH PHƯƠNG HAI PHƯƠNG TRÌNH ĐÃ CHO.

Ta có : (a - 3ab2)2 = a6 - 6a4b+ 9a2b4 .

               (b3 - 3a2b)= b- 6a2b4 + 9a4b.

Ta lại có : (a- 3ab2)2 + (b3 - 3a2b)2 = a6 + 3a4b + 3a2b4 + b6  .

             <=> 2332 + 2010= (a2 + b2).

          <=> a2 + b\(\sqrt[3]{233^2+2010^2}\).

           

13 tháng 10 2017

Ta có: 

\(a^{2010}+b^{2010}+a^{2012}+b^{2012}\)

\(=\left(a^{2010}+a^{2012}\right)+\left(b^{2010}+b^{2012}\right)\ge2a^{2011}+2b^{2011}\)

Dấu = xảy ra khi: \(\hept{\begin{cases}a^{2010}=a^{2012}\\b^{2010}=b^{2012}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

\(\Rightarrow a^{2013}+b^{2013}=2\)

13 tháng 10 2017

giải cách nầy hợp lý hơn nè :

ta có: \(a^{2012}+b^{2012}=\left(a^{2011}+b^{2011}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\)   (1)

mà \(a^{2010}+b^{2010}=a^{2011}+b^{2011}=a^{2012}+b^{2012}\) nên

\(\left(1\right)\Leftrightarrow a^{2010}+b^{2010}=\left(a^{2010}+b^{2010}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\)

\(\Leftrightarrow\left(a^{2010}+b^{2010}\right)\left(1-a-b+ab\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a^{2010}+b^{2010}=0\\1-a-b+ab=0\end{cases}}\)

+) với \(a^{2010}+b^{2010}=0\)

mà a>0 ; b>0 => ko có giá trị của a;b

+) với  1-a-b+ab=0

\(\Rightarrow\left(1-a\right)-b\left(1-a\right)=0\)

\(\Leftrightarrow\left(1-a\right)\left(1-b\right)=0\)  

\(\Leftrightarrow\orbr{\begin{cases}1-a=0\\1-b=0\end{cases}\Rightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}}\)

TH1: a=1=> b^2010 =b^2011 =>\(\orbr{\begin{cases}b=1\\b=0\end{cases}}\)=> b=1 vì b>0

=> a^2013 +b^2013=2

TH2: b=1 => a^2010 +a^2011=>\(\orbr{\begin{cases}a=1\\a=0\end{cases}}\)=> a=1 vì a>0

=> a^2013 +b^2013 =2

Vậy a^2013 +b^2013 =2

17 tháng 6 2020

Ta có: \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc\)

\(=3\left(a^2+b^2+c^2\right)-3\left(ab+bc+ac\right)+3abc\)

Xét: \(4\left(a^2+b^2+c^2\right)-\left(a^3+b^3+c^3\right)\ge9\)(1)

<=> \(\left(a^2+b^2+c^2\right)+3\left(ab+bc+ac\right)-3abc\ge9\)

<=> \(\left(a+b+c\right)^2+\left(ab+bc+ac\right)-3abc\ge9\)

<=> \(ab+bc+ac\ge3abc\)

<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)(2)

Để chứng (1) đúng ta cần chứng minh (2) đúng

Thật vậy ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

=> (2) đúng 

Vậy (1) đúng 

Dấu "=" xảy ra <=> a = b = c =1 .