Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)
Thế vào bài toán trở thành
Cho: \(\frac{x+z}{xz}+\frac{x+y}{xy}+\frac{y+z}{yz}=2013\left(1\right)\)
Tính \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Từ (1) ta có
\(\left(1\right)\Leftrightarrow\frac{xy+yz+zx+yz+xy+zx}{xyz}=2013\)
\(\Leftrightarrow\frac{2\left(xy+yz+zx\right)}{xyz}=2013\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
Ta lại có
\(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
\(\Rightarrow M=\frac{2013}{2}\)
\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
=> 2a-2b+2c=2b <=> a+c=2b. Chia cả 2 vế cho c ta được: \(1+\frac{a}{c}=\frac{2b}{c}\)
Tương tự: \(1+\frac{c}{b}=\frac{2a}{b}\) và \(1+\frac{b}{a}=\frac{2c}{a}\)
=> \(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)=\frac{2a}{b}.\frac{2c}{a}.\frac{2b}{c}=\frac{8.abc}{abc}=8\)
Đáp số: 8
Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)(dãy tỉ số bằng nhau)
=> a = b = c
Khi đó \(P=\left(1+\frac{2a}{b}\right)\left(1+\frac{2b}{c}\right)\left(1+\frac{2c}{a}\right)=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)\)
= (1 + 2)(1 + 2)(1 + 2) = 3.3.3 = 27
Vậy P = 27
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) ( do a + b + c khác 0 )
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow a=b=c\)
Thế vào P ta được :
\(P=\left(1+\frac{2b}{b}\right)\left(1+\frac{2c}{c}\right)\left(1+\frac{2a}{a}\right)=\left(1+2\right)\left(1+2\right)\left(1+2\right)=27\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{\left(b-a\right)-\left(c-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}=2013\)
<=>\(2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
<=>\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}=1006,5\)
Áp dụng thủ thuật 1-2-3 và tính chất a + b = a . b , ta có :
1 + 1 = 1 . 1 ( loại ) , 2 + 2 = 2 . 2 ( giữ ) , 3 + 3 = 3 . 3 ( loại )
Vậy với \(a,b,c\ne0;\frac{ab}{a+b}=\frac{bc}{b+c}+\frac{ac}{a+c}\) , => Đẳng thức xảy ra khi x + y = x . y tức là a = b = c = 2 .
\(\left(1+\frac{a}{2b}\right)\left(1+\frac{b}{3c}\right)\left(1+\frac{c}{4a}\right)\)
\(\Rightarrow\left(1+\frac{1}{2\cdot1}\right)\left(1+\frac{1}{3\cdot1}\right)\left(1+\frac{1}{4\cdot1}\right)\)
\(=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\)
\(=\frac{5}{2}\)( vì \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}=\frac{3\cdot4\cdot5}{2\cdot3\cdot4}=\frac{5}{2}\))
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)
<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
<=> a + b + c = 0 hoặc a = b = c.
Th1: a + b + c = 0
=> a + b = - c ; a + c = -b ; b + c = -a.
Thế vào P :
\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)
\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)
TH2: a = b = c. THế vào P
\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Vậy: P = -1 nếu a + b + c = 0
hoặc P = 8 nếu a = b = c.
\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)
\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\)hoặc \(P=8\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (1)
Xét 2 trường hợp:
- TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}\)
\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}\)
\(P=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)
- TH2: a + b + c \(\ne\) 0
Từ (1) \(\Rightarrow\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)
\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)
\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1
=>\(\frac{a+b-c}{c}=1\)
a+b-c=c
2c=a+b
=>\(\frac{b+c-a}{a}=1\)
b+c-a=a
2a=b+c
=>\(\frac{c+a-b}{b}=1\)
c+a-b=b
=>c+a=2b
ta co \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{c+b}{b}\right)\)
=\(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Do đó :
\(\frac{a}{b+c}=\frac{1}{2}\)\(\Rightarrow\)\(b+c=2a\)
\(\frac{b}{c+a}=\frac{1}{2}\)\(\Rightarrow\)\(c+a=2b\)
\(\frac{c}{a+b}=\frac{1}{2}\)\(\Rightarrow\)\(a+b=2c\)
Suy ra : \(P=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{a}+1\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{2c}{b}.\frac{2a}{c}.\frac{2b}{a}=\frac{8abc}{abc}=8\)
Vậy \(P=8\)
Chúc bạn học tốt ~
Phùng Minh Quân thiếu TH a+b+c=0
Xét a+b+c khác 0 giống bn dưới
Xét \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\) (*)
Ta có: \(P=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{a}+1\right)\)
\(P=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}\)
Thay (*) vào P ta được
\(P=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=\frac{-abc}{abc}=-1\)