\(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Đặt \(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=3k\\b+c=4k\\c+a=5k\end{matrix}\right.\)

\(\Rightarrow2\left(a+b+c\right)=12k\)

\(\Rightarrow a+b+c=6k\) \(\Rightarrow\left\{{}\begin{matrix}a=2k\\b=k\\c=3k\end{matrix}\right.\)

Thay a = 2k , b = k , c= = 3k vào biểu thức M , ta có :

M = 10.2k + k - 7.3k + 2017 = 21k - 21k + 2017 = 2017

3 tháng 1 2018

Đặt \(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=3k\\b+c=4k\\c+a=5k\end{matrix}\right.\Rightarrow2\cdot\left(a+b+c\right)=12k\Rightarrow a+b+c=6k\)

\(\Rightarrow\left\{{}\begin{matrix}c=3k\left(1\right)\\a=2k\left(2\right)\\b=k\left(3\right)\end{matrix}\right.\)

Thay \(\left(1\right),\left(2\right),\left(3\right)\) vào BT ta có:

\(M=10\cdot2k+k-7\cdot3k+2017\)

\(M=20k+k-21k+2017\)

\(M=21k-21k+2017\)

\(M=2017\)

Vậy \(M=2017\)

2 tháng 1 2018

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a+b}{3}=\dfrac{b+c}{4}=\dfrac{c+a}{5}=\dfrac{a+b+b+c+c+a}{3+4+5}=\dfrac{a+b+b+c}{3+4}=\dfrac{b+c+c+a}{4+5}=\dfrac{a+b+c+a}{3+5}=\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{2a+b+c}{8}\)

Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{2a+b+c}{8}=\dfrac{2a+b+c-a-b-c}{8-6}=\dfrac{a}{2}\left(1\right)\)

\(\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{2a+b+c}{8}=\dfrac{a+2b+c-a-b-c}{7-6}=\dfrac{b}{1}\left(2\right)\)

\(\dfrac{a+b+c}{6}=\dfrac{a+2b+c}{7}=\dfrac{b+2c+a}{9}=\dfrac{2a+b+c}{8}=\dfrac{b+2c+a-a-b-c}{9-6}=\dfrac{c}{3}\left(3\right)\)

Từ (1);(2) và (3) ta có: \(\dfrac{a}{2}=\dfrac{b}{1}=\dfrac{c}{3}\)

Đặt: \(\dfrac{a}{2}=\dfrac{b}{1}=\dfrac{c}{3}=t\Leftrightarrow\left\{{}\begin{matrix}a=2t\\b=t\\c=3t\end{matrix}\right.\)

Thay vào \(M\) ta có: \(M=10a+b-7c+2017=20t+t-21t+2017=2017\)

3 tháng 1 2018

Ta có: 

\(\hept{\begin{cases}\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\Rightarrow4a+b-3c=0\left(1\right)\\\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\Rightarrow4a-5b-c=0\Rightarrow4a=5b+c\left(2\right)\\\frac{c+a}{5}=\frac{a+b}{3}\Rightarrow3c+3a=5a+5b\Rightarrow2a+5b-3c=0\Rightarrow3c=2a+5b\left(3\right)\end{cases}}\)

Thay (2) vào (1) ta có: 3b=c

Thay (3) và (1) ta có: 2b=a

Vậy M=10a+b-7c+2017=10.2b+b-7.3b+2017=21b-21b+2017=0+2017=2017

1 tháng 1 2020

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{c+a}{5}=\frac{b+c}{4}=\frac{a+b}{3}=\frac{c+b-b-c+a+b}{5-4+3}=\frac{2a}{4}=\frac{a}{4}\left(1\right)\)

Từ (1) có: \(\frac{b+c}{4}=\frac{a+b}{3}\Leftrightarrow3b+3c=4a+4b\Leftrightarrow b=3c-4a\left(2\right)\)

Thế 2 vào biểu thức  M ta có: \(M=10a+3c-4a-7c+2017=6a-4c+2017\left(3\right)\)

Từ (1) có\(:\frac{c+a}{5}=\frac{a}{2}\Leftrightarrow2c+2a=5a\Leftrightarrow2c=3a\Leftrightarrow4c=6a\left(4\right)\)

Thế (4) vào (3) ta có: \(M=6a-6a+2017=2017\)

Vậy GT M = 2017

1 tháng 1 2020

+ Ta có : \(\frac{a+b}{3}=\frac{b+c}{4}\Rightarrow4a+4b=3b+3c\)

                                                 \(\Rightarrow4a+b=3c\)

             + \(\frac{a+b}{3}=\frac{c+a}{5}\Rightarrow5a+5b=3c+3a\)

                                                 \(\Rightarrow2a+5b=3c\)

            + \(\frac{b+c}{4}=\frac{c+a}{5}\Rightarrow5b+5c=4c+4a\)

                                                 \(\Rightarrow5b+c=4a\)

+ Ta có : \(\hept{\begin{cases}4a+b=3c\\5b+3a=3c\end{cases}\Rightarrow4a+b=5b+2a}\)

                                                         \(\Rightarrow2a=4b\)

                                                             \(\Rightarrow a=2b\)

+ Ta có : \(4a+b=3c\)

\(\Rightarrow4.2b+b=3c\)

\(9b=3c\)

\(\Rightarrow3b=c\)

+ Ta có : \(M=10a+b-7c+2017\)

                    \(=10.2b+b-7.3b+2017\)         

                       \(=20b+b-7.3b+2017\)

                         \(=21b-21b+2017\)

                              \(=0+2017=2017\)

Vậy M =2017 

Chúc bạn học tốt !!!