\(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Áp dụng bđt Cauchy-schwarz dạng engel ta có:

1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)

Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)

2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)

Dấu "=" \(\Leftrightarrow a=b=c\)

NV
21 tháng 10 2019

\(P=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{2ac+3bc}\)

\(P\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\frac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

12 tháng 12 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\). Mà theo BĐT AM-GM ta có:

\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)

Đẳng thức xảy ra khi a=b=c=d

 

5 tháng 8 2016

là \(\frac{2}{3}\) nha

NV
5 tháng 4 2019

Cho \(a=b=c\) ta có:

\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\Leftrightarrow1\ge2\)

Bất đẳng thức sai

NV
18 tháng 11 2019

\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 1:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)[a(b+c)+b(c+a)+c(a+b)]\geq (a+b+c)^2\)

\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)$(*)$

Áp dụng BĐT AM-GM dễ thấy: $a^2+b^2+c^2\geq ab+bc+ac$

$\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2.\frac{(a+b+c)^2}{3}}=\frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bài 2:

Áp dụng BĐT AM-GM:

\(\frac{a^3}{b(2c+a)}+\frac{b}{3}+\frac{2c+a}{9}\geq 3\sqrt[3]{\frac{a^3}{b(2c+a)}.\frac{b}{3}.\frac{2c+a}{9}}=a\)

\(\frac{b^3}{c(2a+b)}+\frac{c}{3}+\frac{2a+b}{9}\geq b\)

\(\frac{c^3}{a(2b+c)}+\frac{a}{3}+\frac{2b+c}{9}\ge c\)

Cộng theo vế và thu gọn ta có:

\(\frac{a^3}{b(2c+a)}+\frac{b^3}{c(2a+b)}+\frac{c^3}{a(2b+c)}\geq \frac{a+b+c}{3}=\frac{3}{3}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
5 tháng 2 2017

Lời giải:

\(\text{BĐT}\Leftrightarrow \frac{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}}{abc}\geq\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) \((\star)\)

Điều này hiển nhiên đúng vì theo Cauchy-SChwarz kết hợp AM-GM:

\(\text{VT}_{\star}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\geq \frac{(a^2+b^2+c^2)^2}{ab+bc+ac}\geq ab+bc+ac\)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c$