Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)
\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{c^2k^2+c^2k}{c^2-kc^2}=\frac{c^2\left(k^2+k\right)}{c^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)
\(\frac{b^2+bd}{d^2-bd}=\frac{d^2k^2+kd^2}{d^2-kd^2}=\frac{d^2\left(k^2+k\right)}{d^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)
\(\Rightarrow\frac{b^2+bd}{d^2-bd}=\frac{a^2+ac}{c^2-ac}\left(\text{đpcm}\right)\)
Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)
\(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Leftrightarrow ad\left(a+c\right)\left(d-b\right)=bc\left(b+d\right)\left(c-a\right)\)
Rút gọn ad với bc \(\Rightarrow\left(a+c\right)\left(d-b\right)=\left(b+d\right)\left(c-a\right)\)
\(\Leftrightarrow ad+cd-ab-bc=bc+cd-ab-ad\)
Rút gọn 2 vế ta đc 0=0
vì 0=0 luôn đúng nên cái phương trình trên luôn đúng
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Có:a2/b2=c2/d2=ac/bd=>a2+ac/b2+bd=c2-ac/b2-bd=>a2+ac/c2-ac=b2+bd/d2-bd
Đặt \(S=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Ta có: \(\frac{a}{a+b+c}< \frac{a}{a+c}\)
\(\frac{b}{b+c+d}< \frac{b}{b+d}\)
\(\frac{c}{c+d+a}< \frac{c}{a+c}\)
\(\frac{d}{d+a+b}< \frac{d}{d+b}\)
\(\Rightarrow S< \left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+d}+\frac{d}{d+b}\right)\)
\(\Rightarrow S< 2\left(1\right)\)
Lại có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{b+c+a+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow S>1\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđpcm\)
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}.\frac{a^2+c^2}{b^2+d^2}=\frac{a^2}{c^2}.\frac{c^2}{d^2}=\frac{a^2}{d^2}\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
\(\RightarrowĐPCM\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
\(\Rightarrow\)\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\) ( đpcm )
Ta có b²=ac=>a/b=b/c
c²=bd=>b/c=c/d
=>a/b=b/c=c/d
=>a³/b³=b³/c³=c³/d³
=>a³/b³=b³/c³=c³/d³=(a³+b³+c³)/(b³+c³+d³)=>a/b=b/c=c/d=(a³+b³+c³)/(b³+c³+d³)
Mà b/c=c/d=>d/c=c/b
=>a/b=d/c
=>a/d=b/c=(a³+b³+c³)/(b³+c³+d³)
=đpcm
TA có : b^2=ac suy ra: a/b=b/c(1)
C^2=bd suy ra: b/c =c/d(2)
Từ(1),(2)ta đc: a/b=b/c=c/d
Áp dụng t/c dãy tỉ số bằng nhau ta đc
a/b=b/c=c/d=a^3/b^3=b^3/c^3=c^3/d^3=a^3+
b^3+c^3/b^3+c^3+d^3
Từ đó a/b= a^3+b^3+c^3/b^3+c^3+d^3
Tương tự b/c và c/d
Suy ra abc/bcd=a^3+b^3+c^3/b^3+c^3+d^3
=» a/d=a^3+b^3+c^3/b^3+c^3+d^3( ĐPCM)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (2)
Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
mk cũng định làm thế nhưng ko rảnh