\(\frac{-x^2}{2}\) (P2)

Chứng mi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

Câu 2a. Theo đầu bài ta có hình:
A B C M N P D E F
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )

1) Do BN = 1/4 BC  =>  SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB  =>  MB = 3/4 AB  =>  SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC

2) Do AM = 1/4 AB  =>  SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA  =>  PA = 3/4 CA  =>  SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC

3) Do CP = 1/4 CA  =>  SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC  =>  NC = 3/4 BC  =>  SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC

Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC

29 tháng 7 2016

bạn có thể giúp mình tất cả các bài còn lại đc ko

CÂU I:cho biểu thức \(P=\left(\frac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\)a,rút gọn Pb,tìm x để \(\frac{1}{P}-\frac{\sqrt{x}+1}{8}\ge1\)CÂU II:1, giải phương trình:   \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)2,giải hệ phương trình:\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)CÂU III:1,tìm các số nguyên dương x;y;z thỏa...
Đọc tiếp

CÂU I:

cho biểu thức \(P=\left(\frac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\frac{x+\sqrt{x}}{x-1}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\)

a,rút gọn P

b,tìm x để \(\frac{1}{P}-\frac{\sqrt{x}+1}{8}\ge1\)

CÂU II:

1, giải phương trình:   \(x-\sqrt{x-8}-3\sqrt{x}+1=0\)

2,giải hệ phương trình:

\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}}\)

CÂU III:

1,tìm các số nguyên dương x;y;z thỏa mãn \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}\in Q\)và x2+y2+z2 là số nguyên tố

2,chứng minh rằng với n là số tự nhiên lớn hơn 1 thì 2n-1 không phải là số chính phương

CÂU IV:

cho tam giác ABC nhọn (AB<AC) nội tiếp (O;r).các đường cao AD;BE;CF cắt nhau tại H.tia EF cắt CB tại P;AP cắt (O;r) tại M(M khác A).

a,CMR:PE.PF=PM.PA

b,CMR:AM vuông góc với HM

c,cho BC cố định,điểm A di động trên cung lớn BC.Xác định vị trí của A để diện tích tam giác BHC lớn nhất

CÂU V:

cho a;b;c là các số thực dương.CMR:

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(\frac{a+b+c}{3}\right)^2\)

3
8 tháng 1 2018

dat \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}=\frac{a}{b}\) dk (a,b)=1 a,b thuoc N*

khi do \(bx-by\sqrt{2014}=ay-az\sqrt{2014}\)

\(\Leftrightarrow bx-ay=\left(by-az\right)\sqrt{2014}\)

\(\Rightarrow\hept{\begin{cases}bx-ay=0\\by-az=0\end{cases}\Leftrightarrow\hept{\begin{cases}bx=ay\\by=az\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\Rightarrow xz=y^2}\)

khi do \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-y^2=\left(x+z-y\right)\left(x+y+z\right)\)

vi x^2 +y^2 +z^2 la so nt va x+y+z>1

nen \(\hept{\begin{cases}x+y+z=x^2+y^2+z^2\\x+z-y=1\end{cases}}\)

giai ra ta co x=y=z=1

Câu !!   .1)\(PT< =>2x-2\sqrt{x-8}-6\sqrt{x}+2=0\)(đk:\(x\ge8\))

\(< =>x-8-2\sqrt{x-8}+1+x-6\sqrt{x}+9=0\)

\(< =>\left(\sqrt{x-8}-1\right)^2+\left(\sqrt{x}-3\right)^2=0\)

\(< =>\hept{\begin{cases}\sqrt{x-8}=1\\\sqrt{x}=3\end{cases}}\)

\(< =>x=9\)(thỏa mãn đk)

vậy.....

B1:\(A=\left(1+\frac{7}{\sqrt{x}+1}+\frac{25}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)\(B=a+\frac{2}{\sqrt{x}+1}\)a)Tính C=A:B.Tìm giá trị của C khi x=9.b)Tìm x để C<1.c)Tìm x nguyên để C nguyên.B2.Cho (d):y=(m-2)x-2m+1  (m khác 2).1)CMR d luôn đi qua 1 điểm cố định.2)Cho điểm A(-1;1).Tìm m để khoảng cách từ A đến d lớn nhất,nhỏ nhất.B3.Cho hệ:\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)Tìm m để hệ có nghiệm...
Đọc tiếp

B1:\(A=\left(1+\frac{7}{\sqrt{x}+1}+\frac{25}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)

\(B=a+\frac{2}{\sqrt{x}+1}\)

a)Tính C=A:B.Tìm giá trị của C khi x=9.

b)Tìm x để C<1.

c)Tìm x nguyên để C nguyên.

B2.Cho (d):y=(m-2)x-2m+1  (m khác 2).

1)CMR d luôn đi qua 1 điểm cố định.

2)Cho điểm A(-1;1).Tìm m để khoảng cách từ A đến d lớn nhất,nhỏ nhất.

B3.Cho hệ:\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

Tìm m để hệ có nghiệm duy nhất thỏa mãn x+y=1.

B4.Cho tam giác ABC,AH vuông BC sao cho AH=BH=2CH.Kẻ BK vuông AC cắt AH ở I.M là trung điểm IH.CM cắt BK và AB lần lượt ở F và N.

1)CMR:I là trung điểm AH và tam giác ABC đồng dạng tam giác NAM.

2)Cho diện tích tam giác ABC là 3.Tính AN và diện tích tam giác IMF.

B5:Cho a,b,c>0 thỏa mãn a+b+c=3.

Tìm min \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)

 

1
10 tháng 1 2020

3/ \(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

Để PT trên có nghiệm duy nhất

\(\frac{m}{1}\ne\frac{1}{m}\Rightarrow m^2\ne1\Rightarrow m\ne1\)

\(\hept{\begin{cases}mx+y=3m\\x+my=2m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\x+my=2m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m^2x+my=3m^2\\m^2x-x=3m^2-2m-1\left(#\right)\end{cases}}\)

Từ (#) \(m^2x-x=3m^2-2m-1\)

\(\Leftrightarrow x\left(m^2-1\right)=3m^2-2m-1\)

\(\Rightarrow x=\frac{3m^2-2m-1}{m^2-1}=\frac{\left(3m+1\right)\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{3m+1}{m+1}\)

Có \(mx+y=3m\Leftrightarrow y=3m-mx=3m-\frac{m\left(3m+1\right)}{m+1}=\frac{3m^2+3m-3m^2-m}{m+1}=\frac{2m}{m+1}\)

=> Vậy PT trên có 1 nghiệm \(\left(x;y\right)=\left(\frac{3m+1}{m+1};\frac{2m}{m+1}\right)\)

Và x + y =1

\(\Rightarrow\frac{3m+1}{m+1}+\frac{2m}{m+1}=1\)

\(\Leftrightarrow\frac{5m+1}{m+1}=1\)

\(\Leftrightarrow\frac{5m+1}{m+1}-1=0\)

\(\Leftrightarrow\frac{5m+1-m-1}{m+1}=0\)

\(\Leftrightarrow\frac{4m}{m+1}=0\)

\(\Rightarrow4m=0\Rightarrow m=0\)

Mik không giỏi dạng này nên có j sai ib ạ >:

4 tháng 10 2019

ai làm giúp mk vs ạ

4 tháng 10 2019

cái dề bài câu b : P= là ở trên í ạ

29 tháng 5 2017

xem lại đầu bài đi bạn ơi,  phương trình đường thẳng sai rồi ...

29 tháng 5 2017

( d ) : y = 2mx+2

19 tháng 10 2017

1. a) Để hàm số đồng biến thì m-1>0\(\Rightarrow\)m>1  b) Để hàm số nghịch biến m-1<0\(\Rightarrow\)m<1        2. a) Tự làm  b) Xét phương trình hoành độ -2x+1=2x\(\Rightarrow\)x=1/4\(\Rightarrow\)   y=1/2. Vậy giao điểm của d và d' có tọa độ (1/4; 1/2)              

19 tháng 10 2017

3 a)ĐKXĐ \(x\ge0\)\(x\ne1\)A=\(\frac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{-2}{\sqrt{x}+1}\)  b)Khi x= \(6-2\sqrt{5}\)thì A=\(\frac{-2}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}\)=\(\frac{2}{\sqrt{5}}\)

30 tháng 5 2017

Xét phương trình hoành độ giao điểm 

\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)

Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có

\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)

theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)

\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)

\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)

Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)

17 tháng 8 2017

Tam giac chưa vuông mà

21 tháng 2 2019

Em kiểm tra lại đề bài nhé!:)