Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhóm 1: \(3{x^3}{y^2};7{x^3}{y^2}.\)
Nhóm 2: \( - 0,2{x^2}{y^3};\dfrac{3}{4}{x^2}{y^3}.\)
Nhóm 3: \( - 4y;y\sqrt 2 .\)
a) Các đơn thức là: \(\dfrac{4}{5}x;\left( {\sqrt 2 - 1} \right)xy; - 3x{y^2};\dfrac{1}{2}{x^2}y;\dfrac{{ - 3}}{2}{x^2}y.\)
b) +Xét đơn thức \(\dfrac{4}{5}x\) có hệ số là \(\dfrac{4}{5}\), phần biến là \(x\).
+Xét đơn thức \(\left( {\sqrt 2 - 1} \right)xy\) có hệ số là \(\sqrt 2 - 1\), phần biến \(xy\).
+Xét đơn thức \( - 3x{y^2}\) có hệ số là \( - 3\), phần biến là \(x{y^2}\).
+Xét đơn thức \(\dfrac{1}{2}{x^2}y\) có hệ số là \(\dfrac{1}{2}\), phần biến \({x^2}y\).
+Xét đơn thức \( - \dfrac{3}{2}{x^2}y\) có hệ số là \( - \dfrac{3}{2}\), phần biến \({x^2}y\).
c) Tổng các đơn thức trên là đa thức:
\(\begin{array}{l}\dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy + \left( { - 3x{y^2}} \right) + \dfrac{1}{2}{x^2}y + \dfrac{{ - 3}}{2}{x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} + \left( {\dfrac{1}{2} + \dfrac{{ - 3}}{2}} \right){x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} - {x^2}y\end{array}\)
Bậc của đa thức trên là 1 + 2 = 3.
a)
\(\begin{array}{l}N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\\ = \left( {5{y^2}{z^2} - 2{y^2}{z^2}} \right) + \left( { - 2x{y^2}z + x{y^2}z} \right) + \left( {\dfrac{1}{3}{x^4} + \dfrac{2}{3}{x^4}} \right)\\ = 3{y^2}{z^2} - x{y^2}z + {x^4}\end{array}\)
b) Đa thức có 3 hạng tử là: \(3{y^2}{z^2}; - x{y^2}z;{x^4}\)
Xét hạng tử \(3{y^2}{z^2}\) có hệ số là 3, bậc là 2+2=4.
Xét hạng tử \( - x{y^2}z\) có hệ số là -1, bậc là 1+2+1=4.
Xét hạng tử \({x^4}\) có hệ số là 1, bậc là 4.
a) Các đơn thức là:
\(\dfrac{4\pi r^3}{3};\dfrac{p}{2\pi};0;\dfrac{1}{\sqrt{2}}\)
b) Các đa thức và hạng tử là:
- \(ab-\pi r^2\)
Hạng tử: \(ab,-\pi r^2\)
- \(x-\dfrac{1}{y}\)
Hạng tử: \(x,-\dfrac{1}{y}\)
- \(x^3-x+1\)
Hạng tử: \(x^3,-x,1\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Các đơn thức là :
\(\left(1-\dfrac{1}{\sqrt[]{3}}\right)x^2;x^2.\dfrac{7}{2}\)
Đơn thức đồng dạng với \(-2x^3y\) là \(\dfrac{1}{3}x^2yx=\dfrac{1}{3}x^3y\)
⇒ Chọn A
Nhóm 1: \(\dfrac{5}{3}{x^2}y; - \dfrac{1}{4}{x^2}y.\)
Nhóm 2: \( - x{y^2}; - 2x{y^2};3x{y^2}.\)
Nhóm 3: \(0,5{x^4};2,75{x^4}.\)