K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2020

a) *Ta có: D(x) = 2x^5 + 3x^4 - x^5 - 2x^3 - x + 3

                 D(x) = ( 2x^5 - x^5 ) + 3x^4 - 2x^3 - x + 3

                 D(x) = x^5 + 3x^4 - 2x^3 - x + 3

    *Ta có: M(x) = -2x + 2x^4 + x - 4x^3 - 5x^4 - 6

                 M(x) = ( 2x^4 - 5x^4 ) - 4x^3 - ( 2x - x ) - 6

                 M(x) = -3x^4 - 4x^3 - x - 6

Vậy   

b) *Ta có : D(x) + M(x) = ( x^5 + 3x^4 - 2x^3 - x + 3 ) + ( -3x^4 - 4x^3 - x - 6 ) 

                  D(x) + M(x) = x^5 + 3x^4 - 2x^3 - x + 3 - 3x^4 - 4x^3 - x - 6

                  D(x) + M(x) = x^5 + ( 3x^4 - 3x^4 ) - ( 2x^3 + 4x^3 ) - ( x + x ) + ( 3 - 6 )

                  D(x) + M(x) = x^5 - 6x^3 - 2x - 3

     *Ta có : D(x) - M(x) = ( -3x^4 - 4x^3 - x - 6 ) -  ( x^5 + 3x^4 - 2x^3 - x + 3 ) 

                   D(x) - M(x) = -3x^4 - 4x^3 - x - 6 - x^5 - 3x^4 + 2x^3 + x - 3

                   D(x) - M(x) = -x^5 - ( 3x^4 + 3x^4 ) - ( 4x^3 - 2x^3 ) - ( x - x ) - ( 6 + 3 )

                   D(x) - M(x) = -x^5 - 6x^4 -2x^3 - 9

Vậy

a, Ta có:

 \(D\left(x\right)=2x^5+3x^4-x^5-2x^3-x+3=x^5+3x^4-2x^3-x+3\)

\(M\left(x\right)=-2x+2x^4+x-4x^3-5x^4-6=-x-3x^4+4x^3-6\)

Sắp xếp : \(D\left(x\right)=x^5+3x^4-2x^3-x+3\)

\(M\left(x\right)=-3x^4+4x^3-x-6\)

b, \(D\left(x\right)+M\left(x\right)=x^5-6x^3-2x-3\)

\(D\left(x\right)-M\left(x\right)=-x^5-6x^4-2x^3-9\)

P/S : lm tắt 

c, Đặt \(-3x^4+4x^3-x-6=0\)

=> Đa thức vô nghiệm 

Chắc đề sai từ cái ý M(x) ý vì ko có j nên viết 2x cx ko tệ.

7 tháng 5 2019

\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)

\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)

7 tháng 5 2019

\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x+6\)

\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)

\(=6x^4-4x^3+10x^2-11x-4\)

a: P(x)=5x^3+3x^2-2x-5

\(Q\left(x\right)=5x^3+2x^2-2x+4\)

b: P(x)-Q(x)=x^2-9

P(x)+Q(x)=10x^3+5x^2-4x-1

c: P(x)-Q(x)=0

=>x^2-9=0

=>x=3; x=-3

d: C=A*B=-7/2x^6y^4

2 tháng 5 2022

a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)

\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)

 

 

 

2 tháng 5 2022

rối lắm luôn

6 tháng 4 2017

a,

C(x)=-3x^4-2x^3+x^2+x+5

1 tháng 5 2017

bài 3:

a) f(x)= x2+2x4-2x3+x2+5x4+4x3-x+5

= (2x4+5x4)+(4x3-2x3)+(x2+x2)-x+5

= 7x4+2x3+2x2-x+5

g(x)= -2x2+8x4+x-x4-3x3+3x2+5+4x3

=(8x4-x4)+(4x3-3x3)+(3x2-2x2)+x+5

= 7x4+x3+x2+x+5

b) h(x)=f(x)-g(x)

=(7x4+2x3+2x2-x+5)-(7x4+x3+x2+x+5)

=7x4+2x3+2x2-x+5-7x4-x3-x2-x-5

=(7x4-7x4)+(2x3-x3)+(2x2-x2)-(x+x)+(5-5)

=x3+x2-2x

Bài 4:

a) f(x)=5x4+x3-x+11+x4-5x3

=(5x4+x4)+(x3-5x3)-x+11

=6x4-4x3-x+11

g(x)=2x3+3x4+9-4x3+2x4-x

=(3x4+2x4)+(2x3-4x3)-x+9

=5x4-2x3-x+9

b) h(x)=f(x)-g(x)

=(6x4-4x3-x+11)-(5x4-2x3-x+9)

=6x4-4x3-x+11-5x4-2x3-x+9

=(6x4-5x4)-(4x3+2x3)-(x+x)+(11+9)

= x4-6x3-2x+20

c) Với x = -2

Ta có: h(-2)=(-2)4-6.(-2)3-2.(-2)+20=88\(\ne\)0

Vậy x = -2 không phải là nghiệm của đa thức h(x)

đúng thì tặng 1 tick cho mk nk các pn!!!

2 tháng 5 2017

giải câu c ở bài 3 với

29 tháng 6 2020

\(a.A(x)=5x^4-5+6x^3+x^4-5x-12\)

\(=(5x^4+x^4)+6x^3-5x-5-12\)

\(=6x^4+6x^3-5x-17\)

\(B(x)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)

\(=(8x^4-2x^4)+(2x^3+4x^3)-2x^2-5x\)

\(=6x^4+6x^3-2x^2-5x\)

a, Ta có \(A\left(x\right)=5x^4-5+6x^3+x^4-5x-12\)

\(=6x^4-17+6x^3-5x\)

\(B\left(x\right)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)

\(=6x^4-5x+6x^3-2x^2\)

Sắp xếp : \(A\left(x\right)=6x^4+6x^3-5x-17\)

\(B\left(x\right)=6x^4+6x^3-2x^2-5x\)

b, Ta có : \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)(thề, đề sai, cho trừ khác ra bn nhé nhưng cx tôn trọng đề vậy =)) 

\(\Leftrightarrow C\left(x\right)=6x^4+6x^3-5x-17+6x^4+6x^3-2x^2-5x\)

\(\Leftrightarrow C\left(x\right)=12x^4+12x^3-10x-17\)

=> vô nghiệm =)) 

17 tháng 6 2020

Cảm ơn bạn nhìu

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;

9 tháng 1 2024

Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1

a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)

\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)

\(=-x^4+3x^3+x^2+x+6\)

\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)

\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)

\(=-x^5-2x^4-2x-1\)

b: Bạn ghi lại đề đi bạn