Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(x)-g(x)+h(x)= (2x^2-3x^3)-(3x-3x^3+2x-2)+(2x^2+1)
=2x^2-3x^3-3x+3x^3-2x+2+2x^2+1
=(2x^2+2x^2)+(-3x^3-3x^3)+(2x+3x)+(-2+1)
=4x^2-6x^3+5x-1
b)g(x)-f(x)+h(x)=3x-3x^3+2x-2-2x^2+3x^3+2x^2+1
=(3x+2x)+(-3x^3+3x^3)+(-2x^2+2x^2)+(-2+1)
=5x-1
bạn ơi, cái chỗ mình bỏ trống là như trên nha
a) f(x) - g(x) - h(x) = (x3-2x2+3x+1)-(x3+x-1)-(2x2-1)
=x3- 2x2+3x + 1 -x3-x+1 - 2x2+1
= ( x3-x3)+(-2x2-2x2) + (3x-x)+(1 + 1 + 1 )
= -4x2 + 2x +3
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
a) Tính
\(f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2+2\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2+2\)
\(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1+2\right)\)
\(=2x+4\)
\(f\left(x\right)+g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)+\left(x^3+x-1\right)+\left(2x^2+2\right)\)
\(=x^3-2x^2+3x+1+x^3+x-1+2x^2+2\)
\(=\left(x^3+x^3\right)+\left(-2x^2+2x^2\right)+\left(3x+x\right)+\left(1-1+2\right)\)
\(=2x^3+4x+2\)
\(f\left(x\right)-g\left(x\right)-h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)-\left(2x^2+2\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1-2x^2-2\)
\(=\left(x^3-x^3\right)+\left(-2x^2-2x^2\right)+\left(3x-x\right)+\left(1+1-2\right)\)
\(=-4x^2+2x\)
b) Tìm x
\(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)
\(2x+4=0\)
\(2x=0-4=-4\)
\(x=\frac{-4}{2}=-2\)
\(f\left(x\right)-g\left(x\right)-h\left(x\right)=0\)
\(-4x^2+2x=0\)
\(-4x^2=-2x\)
\(x^2=\frac{-1}{2}x\)
\(\Leftrightarrow x^2+\frac{1}{2}x=0\)
\(x\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow x=0\)
Hoặc \(x+\frac{1}{2}=0\Leftrightarrow x=0-\frac{1}{2}=\frac{-1}{2}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
a)F(x)+G(x)-H(x)=(x^3-2x^2+3x+1)+(x^3+x-1)-(2x^2-1)
=x^3-2x^2+3x+1+x^3+x-1-2x^2+1
=(x^3+x^3)+(-2x^2-2x^2)+3x+(1-1+1)
=2x^3+(-4x^2)+3x+1