K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:Khi x=4 thì \(B=\dfrac{4-2}{2\cdot2+1}=\dfrac{2}{5}\)

b: \(M=A\cdot B=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}\cdot\dfrac{x-\sqrt{x}}{2\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

Câu 1:       Cho hai biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\)  và \(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)\) với \(x\ge0,x\ne1.\)a) Tính giá trị của biểu thức B khi x = 4;b) Rút gọn biểu thức M = A.B;c) Tìm x để \(M=\dfrac{\sqrt{x}}{6}.\)Câu 2:        Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong...
Đọc tiếp

undefined

Câu 1:

       Cho hai biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\)  và \(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)\) với \(x\ge0,x\ne1.\)

a) Tính giá trị của biểu thức B khi x = 4;

b) Rút gọn biểu thức M = A.B;

c) Tìm x để \(M=\dfrac{\sqrt{x}}{6}.\)

Câu 2:

        Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.

Câu 3: 

1. Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{3}{y}=4\\\dfrac{5}{x}-\dfrac{2}{y}=3\end{matrix}\right.\)

2. Cho phương trình \(x^4-\left(m+2\right)x^2+m+1=0\)   (1)

a) Giải phương trình (1) khi m = 2;

b) Tìm m để phương trình (1) có 4 nghiệm phân biệt.

Câu 4:

Cho đường tròn (O;R). Điểm M ở ngoài đường tròn sao cho OM = 2R. Kẻ hai tiếp tuyến MA, MB với đường tròn (A; B là các tiếp điểm). Nối OM cắt AB tại H. Hak HD ⊥ MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F.

a) Chứng minh MAOB là tứ giác nội tiếp;

b) Chứng minh OH.OM = OA2;

c) Đường tròn đường kính MB cắt BD tại I, gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng.

                                                                   undefined

Câu 5:

Tính diện tích xung quanh của hình nón có đường sinh bằng 10cm, đường kính đáy bằng 8cm.

Chúc các em ôn thi tốt!

 

6
6 tháng 4 2021

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.

Giải

Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)

=> Số học sinh lớp 9B: 90 - x (học sinh)

Số sách và vở lớp 9A quyên góp: 3x (quyển)

Số sách và vở lớp 9B ủng hộ : 2(x-90) (quyển)

Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình

3x + 2(x-90) = 222

\(\Leftrightarrow3x+2x-180=222\)

\(\Leftrightarrow5x=402\)

(đoạn này thì ra lẻ nên e ko tính đc ạ)

6 tháng 4 2021

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.

Giải

Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)

=> Số học sinh lớp 9B: 90 - x (học sinh)

Số sách và vở lớp 9A quyên góp: 3x (quyển)

Số sách và vở lớp 9B ủng hộ : 2(90-x) (quyển)

Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình

3x + 2(90-x) = 222

=> 3x + 180 - 2x = 222

=> x + 180 = 222 

=> x = 42 (tmđk)

Vậy lớp 9A có 42 học sinh

lớp 9B có 90 - 40 = 48 học sinh

17 tháng 10 2022

a: \(P=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

b: ĐểP<15/4 thì P-15/4<0

\(\Leftrightarrow4\left(3\sqrt{x}+8\right)-15\left(\sqrt{x}+2\right)< 0\)

=>12 căn +32-15 căn x+30<0

=>-3 căn x<-62

=>căn x>62/3

=>x>3844/9

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)

22 tháng 7 2017

để mk xữa đề rồi giải luôn coi có đúng o nha NGUYEN THI DIEP

xữa đề rồi giải a): \(P=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right).\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\) đk : \(\left(x\ge0;x\ne1\right)\)

\(P=\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\left(1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)

\(P=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)=1-x\)

b) ta có : \(P=\sqrt{x}\Leftrightarrow1-x=\sqrt{x}\Leftrightarrow x+\sqrt{x}-1=0\)

đặc \(\sqrt{x}=a\) \(\Rightarrow\) ta có phương trình \(\Leftrightarrow a^2+a-1=0\) \(\left(đk:x\ge0\right)\)

\(\Delta=\left(1\right)^2-4.1.\left(-1\right)=1+4=5>0\)

\(\Rightarrow\) phương trình có 2 ngiệm phân biệt

\(a_1=\dfrac{-1+\sqrt{5}}{2}\) (tmđk)

\(a_2=\dfrac{-1-\sqrt{5}}{2}\) (loại)

ta có : \(\sqrt{x}=a=\dfrac{-1+\sqrt{5}}{2}\Rightarrow x=\left(\dfrac{-1+\sqrt{5}}{2}\right)^2=\dfrac{3-\sqrt{5}}{2}\)

vậy \(x=\dfrac{3-\sqrt{5}}{2}\) thì \(P=\sqrt{x}\)

22 tháng 7 2017

đề sai rồi bn NGUYEN THI DIEP

6 tháng 12 2018

a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)

Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)

b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)

hay \(P>0\forall x>0,x\ne1\)(đpcm)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)

31 tháng 7 2017

Câu a có sai đề nên mk có sửa lại nha Liên hệ giữa phép chia và phép khai phương

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

ĐK: \(x>0; x\neq 4\)

Có: \(K=\left(\frac{4\sqrt{x}(2-\sqrt{x})}{(2+\sqrt{x})(2-\sqrt{x})}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}-2)}-\frac{2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\right)\)

\(=\frac{8\sqrt{x}-4x+8x}{(2+\sqrt{x})(2-\sqrt{x})}: \frac{\sqrt{x}-1-2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\)

\(=\frac{8\sqrt{x}+4x}{(2+\sqrt{x})(2-\sqrt{x})}.\frac{\sqrt{x}(\sqrt{x}-2)}{-\sqrt{x}+3}\)

\(=\frac{4\sqrt{x}(2+\sqrt{x})}{2+\sqrt{x}}. \frac{-\sqrt{x}}{3-\sqrt{x}}=\frac{-4\sqrt{x}.\sqrt{x}}{3-\sqrt{x}}=\frac{4x}{\sqrt{x}-3}\)

b)

\(K=-1\Leftrightarrow \frac{4x}{\sqrt{x}-3}=-1\Rightarrow 4x=-(\sqrt{x}-3)\)

\(\Leftrightarrow 4x+\sqrt{x}-3=0\)

\(\Leftrightarrow (4\sqrt{x}-3)(\sqrt{x}+1)=0\)

\(\sqrt{x}+1>0\Rightarrow 4\sqrt{x}-3=0\Rightarrow x=\frac{9}{16}\)

c) \(m(\sqrt{x}-3)K>x+1\)

\(\Leftrightarrow m. (\sqrt{x}-3).\frac{4x}{\sqrt{x}-3}>x+1\)

\(\Leftrightarrow m> \frac{x+1}{4x}\)

\(\Leftrightarrow m> max(\frac{4x}{x+1}), \forall x< 9\)

Với đk đã cho thì ta thấy \(\frac{4x}{x+1}\) có min thôi.

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn