Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có C chia hết cho 13 vì
12.13.14 chia hết cho 13
39 chia hết cho 13
Vậy C là hợp số
2.Ta có 12.13.14 chia hết cho 21 vì
12 chia hết cho 2 và 14 chia hết cho 7 mà 21 = 3.7
Mà 39 chia 21 dư 18
Suy ra C chia 21 dư 18
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
a, 3A = 3^2+3^3+....+3^103
2A=3A-A=(3^2+3^3+....+3^103)-(3+3^2+...+3^102) = 3^103 - 3
=> A = 3^103-3/2
b, Nhóm 3 số thành 1 nhóm : ví dụ 3+3^2+3^3 = 3. (1+3+3^2) = 3.13 chia hết cho 13
c, Nhóm 3 số thành 1 nhóm : ví dụ 3+3^2+3^3= 1.(3+3^2+3^3) = 1.39 chia hết cho 39
d, Từ 3^3 trở đi thì nhóm 4 số thành 1 nhóm : ví dụ 3^3+3^4+3^5+3^6 = 3.(1+3+3^2+3^3) = 3.40 chia hết cho 40
Còn lại : 3+3^2 = 12 chia 40 dư 12 => A chia 40 dư 12
k mk nha
C = 12.13.14 + 39
C = 3.4.13.7.2 + 21 + 18
C = 21.4.13.2 + 21 + 18
Ta có: 21.4.13.2 chia hết 21
21 chia hết 21
18 chia 21 dư 18
suy ra C chia 21 dư 18