K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

\(x^2_2=x_1.x_3\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2},x^2_3=x_2.x_4\Rightarrow\frac{x_4}{x_3}=\frac{x_3}{x_2}\)\(\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}\)

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}=\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\Rightarrow\left(\frac{x_2}{x_1}\cdot\frac{x_3}{x_2}\cdot\frac{x_4}{x_3}\right)=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\Rightarrow\frac{x_4}{x_1}=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\)

\(\Rightarrow\frac{x_1}{x_4}=\left(\frac{x_1+x_2+x_3}{x_2+x_3+x_4}\right)^3\left(đpcm\right)\)

3 tháng 12 2018

Từ \(X_2^2=X_1.X_3\)\(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}\)(1)

Từ \(X_3^2=X_2.X_4\)\(\Rightarrow\frac{X_2}{X_3}=\frac{X_3}{X_4}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}=\frac{X_3}{X_4}=\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\)

\(\Rightarrow\left(\frac{X_1}{X_2}\right)^3=\left(\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\right)^3\)(1)

Từ \(\left(\frac{X_1}{X_2}\right)^3=\frac{X_1}{X_2}.\frac{X_1}{X_2}.\frac{X_1}{X_2}=\frac{X_1}{X_2}.\frac{X_2}{X_3}.\frac{X_3}{X_4}=\frac{X_1}{X_4}\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

23 tháng 11 2016

Có: \(x_2^2=x_1.x_3\Leftrightarrow\frac{x_2}{x_3}=\frac{x_1}{x_2}\left(1\right)\)

\(x_3^2=x_2.x_4\Rightarrow\frac{x_3}{x_4}=\frac{x_2}{x_3}\left(2\right)\)

\(x_4^2=x_3.x_5\Rightarrow\frac{x_4}{x_5}=\frac{x_3}{x_4}\left(3\right)\)

\(x_5^2=x_4.x_6\Rightarrow\frac{x_5}{x_6}=\frac{x_4}{x_5}\left(4\right)\)

Từ (1); (2); (3) và (4) \(\Rightarrow\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=\frac{x_5}{x_6}=\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\)

\(\Rightarrow\frac{x_1^5}{x_2^5}=\frac{x_1}{x_2}.\frac{x_2}{x_3}.\frac{x_3}{x_4}.\frac{x_4}{x_5}.\frac{x_5}{x_6}=\left(\frac{x_1+x_2+x_3+x_4+x_5}{x_2+x_3+x_4+x_5+x_6}\right)^5=\frac{x_1}{x_6}\left(đpcm\right)\)

23 tháng 11 2016

cảm ơn bạn nhé!

 

10 tháng 10 2015

\(\frac{x_1-x_2}{k_1}=\frac{x_2-x_3}{k_2}=\frac{x_1-x_3}{k_3}=\frac{x_1-x_2+x_2-x_3-x_1-x_3}{k_1+k_2-k_3}=\frac{0}{k_1+k_2-k_3}=0\)

=> x1 - x2 = x2 - x3 = x1 - x3= 0

=> x1 = x2 = x3 (đpcm)

Sửa đề tý nhé

Áp dụng tính chất của dãy tí số bằng nhau,ta có:

\(\dfrac{x_1-x_2}{k_1}=\dfrac{x_2-x_3}{k_2}=\dfrac{x_3-x_1}{k_3}=\dfrac{x_1-x_2+x_2-x_3+x_3-x_1}{k1+k2+k3}=0\)

=>\(x_1=x_2\)

\(x_2=x_3\)

\(x_3=x_1\)

Do đó:\(x_1=x_2=x_3\left(đpcm\right)\)

9 tháng 9 2017

mk nhầm k1,k2,k3 thuộc Z+ nhaleuleu

8 tháng 8 2017

dễ thế

13 tháng 12 2019

Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn

 \(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\)\(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ;  \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)

\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)

\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)