K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

b.b=a.c =>a/b=b/c

c.c= b.d => b/c=c/d

=> a/b = b/c = c/d=>a3/b3=b3/c3= c3/d3=> a3+b3+c3/b3+c3+d3

Mặt khác : a3/b3=a.b.c / b.c.d = a/d 

=> ĐPCM

MỆT À nha !! Please DUYỆT

14 tháng 10 2018

i don't know

17 tháng 10 2018

=>b^3=abc

=>c^3=bcd

=>a^3+b^3+c^3/b^3+c^3+d^3=a^3+abc+bcd/d^3+abc+bcd

=>

5 tháng 12 2015

  \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}vàc^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

                           Áp dụng tính chất dãy tỉ số bắng nhau

Do đó :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)1

Vì :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{c}{b}=\frac{b}{a}=\frac{c}{d}\Rightarrow\frac{c}{b}=\frac{b}{c}=\frac{a}{d}\)2

Từ 1 và 2 => Ta có điều phải chứng minh

         TICK MÌNH NHA !

16 tháng 1 2020

bài 1 sai đề ko bạn

16 tháng 1 2020

đề nào và mình ghi sai thứ tự bài

16 tháng 11 2015

Từ \(b^2=a.c\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)

     \(c^2=b.d\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

               \(\Rightarrow\)  \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}\)

               hay \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)(3)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(4)

Từ (3) và (4) \(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(điều phải chứng minh)

31 tháng 1 2020

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)  (1)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)(2)

Từ (1) và (2) => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (3)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\left(\frac{a}{b}\right)^3=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a\cdot b\cdot c}{b\cdot c\cdot d}=\frac{a}{d}\) (4)

Từ (3) và (4) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)(Đpcm)

Chúc bạn học tốt!

31 tháng 1 2020

vì \(b^2=ac;c^2=bd\) suy ra \(b^2c^2=abcd\)=>\(bc=ad\)

Ta có \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3+abc+bcd}{d^3+abc+bcd}=\frac{a^3+bc\left(a+d\right)}{d^3+bc\left(a+d\right)}=\frac{a^3+ad\left(a+d\right)}{b^3+ad\left(a+d\right)}=\frac{a^3+a^2d+d^2a}{d^3+a^2d+d^2a}=\frac{ }{ }\)\(=\frac{a\left(d^2+a^2+ad\right)}{d\left(d^2+a^2+ad\right)}=\frac{a}{d}\)(ĐPCM)

16 tháng 1 2018

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Theo TCDTSBN ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Lại có: \(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)

Từ (1) và (2) => đpcm