Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\left(1-\sqrt{x}\right)\cdot\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\cdot\dfrac{x+\sqrt{x}-2\sqrt{x}+1}{2\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}}\cdot\dfrac{x-\sqrt{x}+1}{2\sqrt{x}-1}=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
b: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{x-3\sqrt{x}+1}{\sqrt{x}}>0\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\dfrac{3}{2}>\dfrac{5}{4}\\\sqrt{x}-\dfrac{3}{2}< -\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}>\dfrac{11}{4}\\\sqrt{x}< \dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x>\dfrac{121}{16}\\x< -\dfrac{121}{16}\end{matrix}\right.\\0< x< \dfrac{1}{16}\end{matrix}\right.\)
Bài 1:
a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)
\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)
Bài 2:
\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
Có: \(a+b+c+2\sqrt{abc}=1\Rightarrow\hept{\begin{cases}a+2\sqrt{abc}=1-b-c\\b+2\sqrt{abc}=1-a-c\\c+2\sqrt{abc}=1-a-b\end{cases}}\)
\(A=\sqrt{a\left(1-b\right)\left(1-c\right)}+\sqrt{b\left(1-c\right)\left(1-a\right)}+\sqrt{c\left(1-a\right)\left(1-b\right)}-\sqrt{abc}+2015\)
\(A=\sqrt{a\left(1-b-c+bc\right)}+\sqrt{b\left(1-a-c+ac\right)}+\sqrt{c\left(1-a-b+ab\right)}-\sqrt{abc}+2015\)
\(A=\sqrt{a\left(a+2\sqrt{abc}+bc\right)}+\sqrt{b\left(b+2\sqrt{abc}+ac\right)}+\sqrt{c\left(c+2\sqrt{abc}+ab\right)}-\sqrt{abc}+2015\)
\(A=\sqrt{\left(a^2+2a\sqrt{abc}+abc\right)}+\sqrt{\left(b^2+2b\sqrt{abc}+abc\right)}+\sqrt{\left(c^2+2c\sqrt{abc}+abc\right)}-\sqrt{abc}+2015\)
\(A=\sqrt{\left(a+\sqrt{abc}\right)^2}+\sqrt{\left(b+\sqrt{abc}\right)^2}+\sqrt{\left(c+\sqrt{abc}\right)^2}-\sqrt{abc}+2015\)
\(A=a+\sqrt{abc}+b+\sqrt{abc}+c+\sqrt{abc}-\sqrt{abc}+2015\)
\(A=a+b+c+2\sqrt{abc}+2015\)
\(A=1+2015=2016\)
Vậy:....
ĐKXĐ: a ≥ 0
a) Ta có:
P = \(\left(1-\dfrac{2\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}+a+1}\right)\)
= \(\dfrac{a-2\sqrt{a}+1}{a+1}:\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a+1\right)}\right)\)
= \(\dfrac{\left(\sqrt{a}-1\right)^2}{a+1}:\dfrac{a-2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(a+1\right)}\)
= \(\dfrac{\left(\sqrt{a}-1\right)^2}{a+1}.\dfrac{\left(\sqrt{a}+1\right)\left(a+1\right)}{\left(\sqrt{a}-1\right)^2}\)
Vậy P = \(\sqrt{a}+1\) với a ≥ 0
b) Ta có: a = \(1996-2\sqrt{1995}\) = \(\left(\sqrt{1995}-1\right)^2\) (TMĐK)
⇒ \(\sqrt{a}=\sqrt{1995}-1\). Thay vào P ta được
P = \(\sqrt{1995}-1+1=\sqrt{1995}\)
Vậy P = \(\sqrt{1995}\) khi a = \(1996-2\sqrt{1995}\)