\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)

Rú...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

https://olm.vn/hoi-dap/question/1027904.html

tk nhé 

^_^

6 tháng 1 2018

\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{ }\)

\(P=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(P=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2}{2x+1}\)

\(P=\frac{x^4-1}{2x+1}+\frac{2}{2x+1}\)

\(P=\frac{x^4+1}{2x+1}\)

Vậy \(P=\frac{x^4+1}{2x+1}\)

8 tháng 3 2018

\(P=\dfrac{2x^5-x^4-2x+1}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(P=\dfrac{2x^5-x^4-2x+1}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{2}{\left(2x+1\right)}\)

\(P=\dfrac{2x^5-x^4-2x+1+2\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(P=\dfrac{2x^5-x^4+2x-1}{\left(2x-1\right)\left(2x+1\right)}\)

\(P=\dfrac{x^4\left(2x-1\right)+2x-1}{\left(2x-1\right)\left(2x+1\right)}\)

\(P=\dfrac{\left(2x-1\right)\left(x^4+1\right)}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{x^4+1}{2x+1}\)

cho P=6

\(\dfrac{x^4+1}{2x+1}=6\)

\(\Leftrightarrow x^4+1=6\left(2x+1\right)\)(đk \(x\ne-\dfrac{1}{2}\))

\(\Leftrightarrow x^4-12x-5=0\)

rồi suy ra x