Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
-(x2-8x+16)-(y2-4y+4)= -(x-4)2-(y-2)2
Ta có : -(x-4)2<= 0
suy ra: -(x-4)2-(y-2)2<=0 (dpcm)
a, Với x khác 1
\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)
b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)
Vậy với x khác 1 thì bth A luôn nhận gtri âm
Ta có:\(10=2xyz\)
=> \(P=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+10}+\frac{10z}{10z+yz+10}\)
\(=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+2xyz}+\frac{2xyz^2}{2xyz^2+yz+2xyz}\)
\(=\frac{1}{2x+2xz+1}+\frac{2x}{1+2x+2xz}+\frac{2xz}{2xz+1+2x}\)
\(=1\)
Vậy P=1
\(A=a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36\)
\(A=a\left(a+6\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+1\right)+36\)
\(A=\left(a^2+6a\right)\left(a^2+6a+8\right)\left(a^2+6a+5\right)+36\)
Đặt t = a2 +6a. Khi đó phương trình trở thành:
\(A=t\left(t+8\right)\left(t+5\right)+36\)
\(A=t\left(t^2+13t+40\right)+36\)
\(A=t^3+13t^2+40t+36\)
\(A=t^3+2t^2+11t^2+22t+18t+36\)
\(A=t^2\left(t+2\right)+11t\left(t+2\right)+18\left(t+2\right)\)
\(A=\left(t+2\right)\left(t^2+11t+18\right)\)
\(A=\left(t+2\right)\left(t^2+2t+9t+18\right)\)
\(A=\left(t+2\right)\left[t\left(t+2\right)+9\left(t+2\right)\right]\)
\(A=\left(t+2\right)\left(t+2\right)\left(t+9\right)\)
\(A=\left(t+2\right)^2\left(t+9\right)\)
Thế t = a2 + 6a vào A ta được:
\(A=\left(a^2+6a+2\right)^2\left(a^2+6a+9\right)\)
\(A=\left(a+3\right)^2\left(a^2+6a+2\right)^2\)
\(A=\left[\left(a+3\right)\left(a^2+6a+2\right)\right]^2\)
Vậy với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
Q=x2+6y2−2xy−12x+2y+2017
Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976
=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976
=[(x-y)2-12(x-y)+36]+5(y-1)2+1976
=(x-y-6)2+5(y-1)2+1976
do (x-y-6)2 ≥ 0 ∀ x,y
(y-1)2 ≥ 0 ∀ y
=> (x-y-6)2+5(y-1)2+1976 ≥ 1976
=> Q≥ 1976
=> MinA=1976 khi
y-1=0
=>y=1
x-y-6=0
=>x-1-6=0
=>x-7=0
=>x=7
Vậy GTNN của Q =1976 khi x=7 và y=1