Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)
\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)
\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)
a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)
\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)
\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)
b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)
\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)
\(\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{x+y}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\right]:\dfrac{x^3+y^3}{x^2y^2}-\dfrac{x+y}{x^2-xy+y^2}\)
\(=\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{x+y}.\dfrac{x+y}{xy}\right].\dfrac{x^2y^2}{x^3+y^3}-\dfrac{x+y}{x^2-xy+y^2}\)
\(=\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}\right].\dfrac{x^2y^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}-\dfrac{x+y}{x^2-xy+y^2}\)
\(=\dfrac{y^2+x^2+2xy}{x^2y^2}.\dfrac{x^2y^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}-\dfrac{x+y}{x^2-xy+y^2}\)
\(=\dfrac{\left(x+y\right)^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}-\dfrac{x+y}{x^2-xy+y^2}\)
=\(=\dfrac{x+y}{x^2-xy+y^2}-\dfrac{x+y}{x^2-xy+y^2}=0\)
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)
\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)
\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)
\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)
\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)
\(=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=x^2y^2-y+x^2+y^2-x^2y+1\)
\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)
\(=\left(x^2+1\right)\left(y^2-y+1\right)\)
=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)
Dấu = xảy ra khi y=3/8
Lời giải:
a) Ta có:
\(Q=\left[\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{x+y}\left(\frac{1}{x}+\frac{1}{y}\right)\right].\frac{x^2y^2}{x^3+y^3}\)
\(=\left[\frac{x^2+y^2}{x^2y^2}+\frac{2}{x+y}.\frac{x+y}{xy}\right].\frac{x^2y^2}{x^3+y^3}\)
\(=\left[\frac{x^2+y^2}{x^2y^2}+\frac{2}{xy}\right].\frac{x^2y^2}{x^3+y^3}\)
\(=\frac{x^2+y^2}{x^2y^2}.\frac{x^2y^2}{x^3+y^3}+\frac{2x^2y^2}{xy(x^3+y^3)}\)
\(=\frac{x^2+y^2}{x^3+y^3}+\frac{2xy}{x^3+y^3}=\frac{x^2+y^2+2xy}{x^3+y^3}\)
\(=\frac{(x+y)^2}{x^3+y^3}=\frac{(x+y)^3}{(x+y)(x^2-xy+y^2)}=\frac{x+y}{x^2-xy+y^2}\)
b)
Khi \(x=1,y=2\Rightarrow Q=\frac{1+2}{1^2-1.2+2^2}=1\)