Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)
\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)
Để A=0 thì x+1=0
hay x=-1
b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)
Để B=0 thi (x-2)(x+2)=0
=>x=2 hoặc x=-2
a) \(ĐKXĐ:x\ne\pm3;x\ne-6\)
Với \(x\ne\pm3;x\ne-6\), ta có:
\(P=\left(\dfrac{x}{x-3}-\dfrac{2}{x+3}+\dfrac{x^2}{9-x^2}\right):\dfrac{x+6}{3x+9}\\ =\left(\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2}{\left(x+3\right)\left(x-3\right)}\right)\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x^2+3x-2x+6-x^2}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{3}{x-3}\)
Vậy \(P=\dfrac{3}{x-3}\) với \(x\ne\pm3;x\ne-6\)
b) Ta có: \(2x-\left|4-x\right|=5\)
+) Nếu \(x\le4\Leftrightarrow2x-\left(4-x\right)=5\)
\(\Leftrightarrow2x-4+x=5\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\left(Tm\right)\)
+) Nếu \(x>4\Leftrightarrow2x-\left(x-4\right)=5\)
\(\Leftrightarrow2x-x+4=5\\ \Leftrightarrow x=1\left(Ktm\right)\)
Với \(x\ne\pm3;x\ne-6\)
Khi \(x=3\left(Ktm\right)\rightarrow\text{loại}\)
Vậy khi \(2x-\left|4-x\right|=5\) không có giá trị.
c) Với \(x\ne\pm3;x\ne-6\)
Để P nhận giá trị nguyên
thì \(\Rightarrow\dfrac{3}{x-3}\in Z\)
\(\Rightarrow3⋮x-3\\ \Rightarrow x-3\inƯ_{\left(3\right)}\)
Mà \(Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)
Lập bảng giá trị:
\(x-3\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(x\) | \(0\left(TM\right)\) | \(2\left(TM\right)\) | \(4\left(TM\right)\) | \(6\left(KTM\right)\) |
Vậy để P nhận giá trị nguyên
thì \(x\in\left\{0;2;4\right\}\)
d) Với \(x\ne\pm3;x\ne-6\)
Ta có : \(P^2-P+1=\dfrac{9}{\left(x-3\right)^2}-\dfrac{3}{x-3}+1\)
Đặt \(\dfrac{3}{x-3}=y\)
\(\Rightarrow P^2-P+1=y^2-y+1\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Do \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)
\(\Rightarrow P^2-P+1=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)
Dấu "=" xảy ra khi:
\(\left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{x-3}=\dfrac{1}{2}\\ \Leftrightarrow x-3=6\\ \Leftrightarrow x=9\left(TM\right)\)
Vậy \(GTNN\) của biểu thức là \(\dfrac{3}{4}\) khi \(x=9\)
a) Rút gọn :
P = \(\left(\dfrac{2x}{x+3}+\dfrac{10}{x-3}-\dfrac{2x^2+14}{x^2-9}\right):\dfrac{4}{x+3}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
Ta có : \(P=\left[\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{10\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2x^2+14}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{x+3}{4}\)
\(P=\dfrac{2x^2-6x+10x+30-2x^2-14}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4}\)
\(P=\dfrac{4x+16}{4x-13}=\dfrac{x+4}{x-3}\)
b) |x| = 3 => \(\left\{{}\begin{matrix}\left|x\right|=3khix\ge0\\\left|x\right|=-3khix< 0\end{matrix}\right.\)
* TH1 : x \(\ge0\)
\(P=\dfrac{x+4}{x-3}=\dfrac{3+4}{3-3}\left(koTMvìmẫu\ne0\right)\)
* TH2 : x < 0
\(P=\dfrac{x+4}{x-3}=\dfrac{-3+4}{-3-3}=\dfrac{-1}{6}\left(Tm\right)\)
c) Để P = \(\dfrac{-1}{2}\) thì :
\(\dfrac{x+4}{x-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow2x+8=3-x\)
\(\Leftrightarrow2x+x=-8+3\)
\(\Leftrightarrow3x=-5\Rightarrow x=\dfrac{-5}{3}\)
d) P \(\le\) 2
<=> \(\dfrac{x+4}{x-3}\le2\)
\(\Leftrightarrow\dfrac{x+4}{x-3}-\dfrac{2x-6}{x-3}\le0\)
\(\Leftrightarrow\dfrac{10-x}{x-3}\le0\)
Lập bang xét dấu và tìm x nhé!!
a: ĐKXĐ: \(x\in\left\{-5;3;-3\right\}\)
\(A=\dfrac{-3\left(x+5\right)}{\left(x+5\right)^2}:\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-3}{x+5}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-3\left(x+3\right)}\)
\(=\dfrac{x-3}{x+5}\)
b: Để A<1 thì A-1<0
=>\(\dfrac{x-3-x-5}{x+5}< 0\)
=>x+5>0
=>x>-5
c: Để A=(2x-3)/(x+1) thì \(\dfrac{2x-3}{x+1}=\dfrac{x-3}{x+5}\)
=>2x^2+10x-3x-15=x^2-2x-3
=>2x^2+7x-15-x^2+2x+3=0
=>x^2+9x-12=0
hay \(x=\dfrac{-9\pm\sqrt{129}}{2}\)
a/ đkxđ: x \(\ne\pm\)2; x≠3
\(P=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right):\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
\(=\left(\dfrac{\left(2+x\right)^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}+\dfrac{4x^2}{x^2-4}\right):\dfrac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)
\(=\dfrac{x^2+4x+4-x^2+4x-4+4x^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{x-3}\)
\(=\dfrac{8x+4x^2}{2+x}\cdot\dfrac{1}{x-3}=\dfrac{4x\left(2+x\right)}{2+x}\cdot\dfrac{1}{x-3}=\dfrac{4x}{x-3}\)
b/ x = \(\dfrac{1}{3}\Leftrightarrow P=\dfrac{4\cdot\dfrac{1}{3}}{\dfrac{1}{3}-3}=\dfrac{4}{3}:\left(-\dfrac{8}{3}\right)=\dfrac{4}{3}\cdot\left(-\dfrac{3}{8}\right)=-\dfrac{4}{8}=-\dfrac{1}{2}\)
c/ \(P\in Z\Rightarrow\dfrac{4x}{x-3}\in Z\)
Ta có: \(\dfrac{4x}{x-3}=\dfrac{4x-12+12}{x-3}=\dfrac{4\left(x-3\right)}{x-3}+\dfrac{12}{x-3}=4+\dfrac{12}{x-3}\)
=> \(x-3\inƯ\left(12\right)\) thì P ∈ Z
=> \(x-3=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(\Leftrightarrow x=\left\{-9;-3;-1;0;1;2;4;5;6;7;9;15\right\}\)
mà x>4
=> x = {5;6;7;9;15}
a, Ta có:
\(P=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right):\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
\(=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{4-x^2}\right):\left[\dfrac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\right]\)
\(=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{\left(2-x\right)\left(2+x\right)}\right):\dfrac{x-3}{2-x}\)
\(=\dfrac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4+4x+x^2-\left(4-4x+x^2\right)+4x^2}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4+4x+x^2-4+4x-x^2+4x^2}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{2-x}{x-3}\)
\(=\dfrac{4x}{x-3}\)
a: \(Q=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |x|=1/3 thì x=1/3 hoặc x=-1/3
Khi x=1/3 thì \(Q=\left(\dfrac{1}{3}\right)^2:\left(\dfrac{1}{3}-1\right)=-\dfrac{1}{6}\)
Khi x=-1/3 thì \(Q=\left(-\dfrac{1}{3}\right)^2:\left(-\dfrac{1}{3}-1\right)=-\dfrac{1}{12}\)
c: Để Q là số nguyên thì \(x^2-1+1⋮x-1\)
=>\(x-1\in\left\{1;-1\right\}\)
=>x=2
d: Để Q=4 thì x^2=4x-4
=>x=2
1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)
\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)
2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)
3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(=\dfrac{x+y+z}{2}\)
Lời giải:
ĐKXĐ: \(x\neq \left\{2;\pm 3\right\}\)
a) Ta có:
\(P=\left(\frac{x^2-3x}{x^2-9}-1\right):\left(\frac{9-x^2}{x^2+x-6}-\frac{x-3}{2-x}-\frac{x-2}{x+3}\right)\)
\(P=\left(\frac{x(x-3)}{(x-3)(x+3)}-1\right):\left(\frac{(3-x)(3+x)}{(x-2)(x+3)}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)
\(P=\left(\frac{x}{x+3}-1\right):\left(\frac{3-x}{x-2}-\frac{3-x}{x-2}-\frac{x-2}{x+3}\right)\)
\(P=\frac{x-(x+3)}{x+3}:\left(-\frac{x-2}{x+3}\right)=\frac{-3}{x+3}.\frac{x+3}{-(x-2)}=\frac{3}{x-2}\)
b) \(x^3-3x+2=0\)
\(\Leftrightarrow (x^3-x)-2(x-1)=0\)
\(\Leftrightarrow x(x-1)(x+1)-2(x-1)=0\)
\(\Leftrightarrow (x-1)(x^2+x-2)=0\)
\(\Leftrightarrow (x-1)[(x^2-1)+(x-1)]=0\)
\(\Leftrightarrow (x-1)^2(x+2)=0\) \(\Leftrightarrow \left[\begin{matrix} x=1\\ x=-2\end{matrix}\right.\)
Với \(x=1\Rightarrow P=\frac{3}{1-2}=-3\)
Với \(x=-2\Rightarrow P=\frac{3}{-2-2}=\frac{-3}{4}\)
c)
\(P=\frac{3}{x-2}\in\mathbb{Z}\Leftrightarrow 3\vdots x-2\)
\(\Leftrightarrow x-2\in \text{Ư}(3)\Rightarrow x-2\in\left\{\pm 1; \pm 3\right\}\)
\(\Leftrightarrow x\in \left\{3,1,5,-1\right\}\)
Do \(x\neq 3\Rightarrow x\in \left\{-1,1,5\right\}\)