Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(x\ne\pm5,x\ne0,x\ne\frac{5}{2}\)
Rút gọn :
Ta có : \(P=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{5\left(2x-5\right)}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x-5\right)\left(x+5\right)}:\frac{5\left(2x-5\right)}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{5\left(2x-5\right)}{x\left(x-5\right)\left(x+5\right)}\cdot\frac{x\left(x+5\right)}{5\left(2x-5\right)}+\frac{x}{5-x}\)
\(=\frac{1}{x-5}-\frac{x}{x-5}=\frac{1-x}{x-5}\)
Vậy : \(P=\frac{1-x}{x-5}\) với \(x\ne\pm5,x\ne0,x\ne\frac{5}{2}\)
b) Để \(P=2013\Leftrightarrow\frac{1-x}{x-5}=2013\)
\(\Leftrightarrow\frac{1-x}{x-5}-2013=0\)
\(\Leftrightarrow\frac{1-x-2013\left(x-5\right)}{x-5}=0\)
\(\Rightarrow10066-2014x=0\)
\(\Leftrightarrow2014x=10066\)
\(\Leftrightarrow x=\frac{10066}{2014}\approx4,999\)( thỏa mãn )
c) Để P là số nguyên \(\Leftrightarrow1-x⋮x-5\)
\(\Leftrightarrow-\left(x-5\right)-4⋮x-5\)
\(\Leftrightarrow4⋮x-5\)
\(\Leftrightarrow x-5\inƯ\left(4\right)\)
\(\Leftrightarrow x-5\in\left\{-1,1,-2,2,-4,4\right\}\)
\(\Leftrightarrow x\in\left\{4,6,3,7,1,9\right\}\) ( thỏa mãn ĐKXĐ và \(x\inℤ\) )
Vậy \(x\in\left\{4,6,3,7,1,9\right\}\) để P là số nguyên .
a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)
\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)
d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)
Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)
a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)
\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)
d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)
\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng nhé
e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)
\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)
a) Rút gọn :
\(ĐKXĐ:x\ne\pm5\)
Ta có : \(P=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{2x-5}{x\left(x+5\right)}-\frac{2x}{5-x}\)
\(=\left(\frac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x-5\right)\left(x+5\right)}\right):\frac{\left(2x-5\right)\left(x-5\right)+2x^2\left(x+5\right)}{x\left(x+5\right)\left(x-5\right)}\)
\(=\frac{10x-25}{x\left(x-5\right)\left(x+5\right)}\cdot\frac{x\left(x+5\right)\left(x-5\right)}{ }\)
Tui đang định làm tiếp đó, nhưng khẳng định đề này hơi sai sai ở vế bị chia. Bạn xem lại đc k ?
P/s : lười làm nên đăng hình ảnh zậy , viết mỏi tay lắm ( em lùng ảnh cũ , ko phải bây h mới làm , có kí tên nên ko pải hàng fake )
a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)
\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)
Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)
Để A nhận giá trị nguyên thì x-3 chia hết chi x+1
=> (x+1)-4 chia hết chi x+1
=> 4 chia hết cho x+1
x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng
x+1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -5 | -3 | -2 | 0 | 1 | 3 |
ĐCĐK | tm | tm | tm | ktm | ktm | tm |
Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên
c) I3x-1I=5
\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)
Đên đây thay vào rồi tính nhé
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)
\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x-3}{x+1}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow x-3⋮x+1\)
\(\Leftrightarrow x+1-4⋮x+1\)
\(\Leftrightarrow4⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)
Mà \(x\ne0;x\ne1\)
\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)
c) Khi \(\left|3x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên
Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)
\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x+4}{x-3}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)
\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)
\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
c) Để \(A=\frac{3}{5}\)
\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)
\(\Leftrightarrow5x+20=3x-9\)
\(\Leftrightarrow2x+29=0\)
\(\Leftrightarrow x=-\frac{29}{2}\)
d) Để \(A< 0\)
\(\Leftrightarrow\frac{x+4}{x-3}< 0\)
\(\Leftrightarrow1+\frac{7}{x-3}< 0\)
\(\Leftrightarrow\frac{-7}{x-3}< 1\)
\(\Leftrightarrow-7< x-3\)
\(\Leftrightarrow x>-4\)
e) Để \(A>0\)
\(\Leftrightarrow\frac{x+4}{x-3}>0\)
\(\Leftrightarrow1+\frac{7}{x-3}>0\)
\(\Leftrightarrow\frac{-7}{x-3}>1\)
\(\Leftrightarrow-7>x-3\)
\(\Leftrightarrow x< -4\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\pm2\end{cases}}\)
\(P=\left(\frac{x^2}{x^3-4x}-\frac{10}{5x+10}-\frac{1}{2-x}\right):\)\(\left(x+2+\frac{6-x^2}{x-2}\right)\)
\(=\left(\frac{x^2}{x\left(x^2-4\right)}-\frac{10}{5\left(x+2\right)}+\frac{1}{x-2}\right)\)\(:\left(\frac{\left(x-2\right)\left(x+2\right)}{x-2}+\frac{6-x^2}{x-2}\right)\)
\(=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)\(:\left(\frac{x^2-4+6-x^2}{x-2}\right)\)
\(=\frac{x-2x+4+x+2}{\left(x-2\right)\left(x+2\right)}:\frac{2}{x-2}\)
\(=\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right).2}=\frac{3}{x+2}\)
\(b,P\in Z\Leftrightarrow\frac{3}{x+2}\in Z\Rightarrow3\)\(⋮\)\(x+2\Rightarrow x+2\inƯ_3\)
MÀ \(Ư_3=\left\{\pm1;\pm3\right\}\)
TH1 : \(x+2=-1\Rightarrow x=-3\)
Th2 : \(x+2=1\Rightarrow x=-1\)
Th3 : \(x+2=-3\Rightarrow x=-5\)
Th4 : \(x+3=3\Rightarrow x=0\left(ktm\right)\)
Vậy để P có giá trị nguyên thì x thuộc { - 3 ; - 5 ;- 1 }
\(c,P=-1\Leftrightarrow\frac{3}{x+2}=-1\)
\(\Rightarrow\frac{3}{x+2}=\frac{-1}{1}\Rightarrow3=-1\left(x+2\right)\)
\(\Rightarrow-x-2=3\Rightarrow-x=5\)
\(\Rightarrow x=-5\)
Vậy để P = -1 thì x = - 5
\(d,P>0\Leftrightarrow\frac{3}{x+2}>0\)
Vì \(x+2>0\)nên để \(\frac{3}{x+2}>0\)thì \(x+2>0\)
\(\Rightarrow x>-2\)
Vậy để \(P>0\)thì \(x>2\) và \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(đk\hept{\begin{cases}\left(x+2\right)\left(x-2\right)x\ne0\\x+2\ne0\end{cases}< =>x\ne0;x\ne\pm}2\)
P=\(\left(\frac{x}{x^2-4}-\frac{10\left(x-2\right)}{5\left(x+2\right)\left(x-2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right):\)\(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{6-x^2}{x+2}\)
=\(\frac{x-2\left(x-2\right)+x+2}{\left(x-2\right)\left(x+2\right)}:\left(\frac{x^2-4+6-x^2}{x+2}\right)\)=\(\frac{6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{2}=\frac{3}{x-2}\)
b) P \(\in Z\)<=> x-2=3;x-2=-3;x-2=1;x-2=-1 <=> x=5; x=-1; x=3; x=1 (thỏa mãn điều kiện ban đầu)
c) P=1 <=> x-2=3 <=> x=5 (thỏa mãn điều kiện)
d) P>0 <=> x-3 >=0 <=> x>3 kết hợp với điều kiện ban đầu => x>3