Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x=\frac{16}{9}\) vào biểu thức ta có:
\(A=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Vậy \(A=7\)
Thay \(x=\frac{25}{9}\) vào biểu thức ta có:
\(A=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
Vậy \(A=4\)
a) x=16/9 => A = 6
x=25/9 => A = 3
b) A = 5 (=) x = 35/25
k cho mik nha
A = căn x +1 trên căn x -1
A = căn x - 1 + 3 trên căn x - 1
A = 1 cộng vs 3 trên căn x - 1
thay x = 16/9
A = 1+ vs 3 trên căn 16/9 -1
A = 1 + vs 3 trên 4/3 - 1
A = 1+ vs 3 trên 1/3
A = 1+ vs 9
A= 10
tương tự vs x =25/9
A=5
=> 5 =1 + vs 3 trên căn x -1
4 = 3 trên căn x -1
căn x-1 = 3/4
căn x = 7/3
x = 49/9
đúng đấy
\(a)\) Ta có : \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}-1}+\frac{2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Thay \(x=\frac{16}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được :
\(A=1+\frac{2}{\sqrt{\frac{16}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{4}{3}\right)^2}-1}=1+\frac{2}{\frac{4}{3}-1}=1+\frac{2}{\frac{1}{3}}=1+6=7\)
Vậy giá trị của \(A=7\) khi \(x=\frac{16}{9}\)
Thay \(x=\frac{25}{9}\) vào \(A=1+\frac{2}{\sqrt{x}-1}\) ta được :
\(A=1+\frac{2}{\sqrt{\frac{25}{9}}-1}=1+\frac{2}{\sqrt{\left(\frac{5}{3}\right)^2}-1}=1+\frac{2}{\frac{5}{3}-1}=1+\frac{2}{\frac{2}{3}}=1+3=4\)
Vậy giá trị của \(A=4\) khi \(x=\frac{25}{9}\)
\(b)\) Để \(A=5\) thì \(1+\frac{2}{\sqrt{x}-1}=5\)
\(\Rightarrow\)\(\frac{2}{\sqrt{x}-1}=4\)
\(\Rightarrow\)\(\frac{1}{\sqrt{x}-1}=\frac{1}{2}\)
\(\Rightarrow\)\(\sqrt{x}-1=2\)
\(\Rightarrow\)\(\sqrt{x}=3\)
\(\Rightarrow\)\(x=3^2\)
\(\Rightarrow\)\(x=9\)
Vậy để \(A=5\) thì \(x=9\)
\(c)\) Để \(A\inℤ\) thì \(1+\frac{2}{\sqrt{x}-1}\inℤ\)
\(\Rightarrow\)\(2⋮\left(\sqrt{x}-1\right)\)
\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)
Suy ra :
\(\sqrt{x}-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(4\) | \(0\) | \(9\) | \(1\) |
Vậy để \(A\inℤ\) thì \(x\in\left\{0;1;4;9\right\}\)
Chúc bạn học tốt ~
Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+2}=\frac{\sqrt{x}+2-5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{x}+2}=-1\)
a)Thay x = 1/4 vào A,ta có \(A=1-\frac{5}{\sqrt{x}+2}=1-\frac{5}{\sqrt{\frac{1}{4}}+2}=-1\)
b) Theo kết quả câu a) khi x = 1/4 thì A = -1
Vậy x = 1/4
c)Để A nhận giá trị nguyên thì \(\frac{5}{\sqrt{x}+2}\) nguyên.
Hay \(\sqrt{x}+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Đến đây bí.
Để A là số nguyên thì 9 \(⋮\)\(\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
Lập bảng ta có :
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | 36 | 16 | 64 | 4 | 196 | không tồn tại |
Vậy x = ....
Biến đổi : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Do B là số nguyên nên \(\frac{4}{\sqrt{x}-3}\)phải là số nguyên ( 1 )
\(\Rightarrow4⋮\sqrt{x}-3\)\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng ta có :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | 16 | 4 | 25 | 1 | 49 | không tồn tại |
Vậy x = ....
a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)
Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)
b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)
Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)
Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành
\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)
\(\Rightarrow t=5t-10\)
\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)
\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)
\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)
Vậy \(x=\frac{9}{4}\)