Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ne-3;x\ne-2;x\ne1\)
\(A=\left(\frac{2-x}{x+3}+\frac{x-3}{x+2}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)
\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\frac{-1}{x-1}\)
\(=\frac{4-x^2+x^2-9+2-x}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)\)
\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}.\left(1-x\right)=\frac{-1}{x+2}.\left(1-x\right)=\frac{x-1}{x+2}\)
b) A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}=0\)
Do x khác -2 nên x - 1 = 0 hay x = 1 (loại vì ko thỏa ĐK)
A = 0 \(\Leftrightarrow\)\(\frac{x-1}{x+2}>0\)Xét 2 TH:
- TH1: x - 1 > 0 và x + 2 > 0 suy ra x > 1 và x > -2 nên ta chọn x > 1.
- TH1: x - 1 < 0 và x + 2 < 0 suy ra x < 1 và x < -2 nên ta chọn x < -2. Và x khác -3
Vậy để A > 0 thì x > 1 hoặc x < -2 \(\left(x\ne-3\right)\)
bài này dễ mà mk gợi ý rồi cậu tự làm ha . tách mẫu x^2 + 5x + 6 sau đó đặt nhân tử chung rồi tính con ve sau thì quy đồng lên rồi tính . mk goi y thế chắc cậu ko hiểu lắm đúng ko nhưg hiện h mk bạn làm chưa có ai thèm giải hộ mk có cậu làm đc phần đó thì giải hộ mk đi . Làm ơn !
ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)
\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)
Đề sai à ??
a) \(-ĐKXĐ:x\ne\pm2;1\)
Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)
b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)
\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)
Vậy với mọi x thỏa mãn x>1 thì A > 0
c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy x = -1;-2
a) đk : \(x\ne2;-3\)
\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{x^2+x-6}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-4-5-x-3}{x^2+x-6}\)
\(=\frac{x^2-x-12}{x^2+x-6}\)
\(=\frac{x^2-4x+3x-12}{x^2+3x-2x-6}\)
\(=\frac{x\left(x-4\right)+3\left(x-4\right)}{x\left(x+3\right)-2\left(x+3\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
b)
A>0.
\(\frac{x-4}{x-2}>0\)
th1 :
x-4>0 và x-2>0
<=> x>4
th2 : x-4 <0 và x-2 < 0
<=> x<2
Vậy để A>0 thì x>4 hoặc x<2
a) \(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\) \(\left(ĐKXĐ:x\ne2;-3\right)\)
\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{-1\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(A=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{\left(x^2-4x\right)+\left(3x-12\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(A=\frac{x-4}{x-2}\)
b) Để \(A>0\)thì \(\frac{x-4}{x-2}>0\)
\(\Rightarrow\)(x - 4) ; (x - 2) cùng dấu
* hoặc \(\hept{\begin{cases}x-4>0\\x-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x>2\end{cases}}\Leftrightarrow x>4\)
* hoặc \(\hept{\begin{cases}x-4< 0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 4\\x< 2\end{cases}}\Leftrightarrow x< 2\)
Vậy \(\orbr{\begin{cases}x>4\\x< 2\end{cases}}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)
\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x+4}{x-3}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)
\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)
\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
c) Để \(A=\frac{3}{5}\)
\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)
\(\Leftrightarrow5x+20=3x-9\)
\(\Leftrightarrow2x+29=0\)
\(\Leftrightarrow x=-\frac{29}{2}\)
d) Để \(A< 0\)
\(\Leftrightarrow\frac{x+4}{x-3}< 0\)
\(\Leftrightarrow1+\frac{7}{x-3}< 0\)
\(\Leftrightarrow\frac{-7}{x-3}< 1\)
\(\Leftrightarrow-7< x-3\)
\(\Leftrightarrow x>-4\)
e) Để \(A>0\)
\(\Leftrightarrow\frac{x+4}{x-3}>0\)
\(\Leftrightarrow1+\frac{7}{x-3}>0\)
\(\Leftrightarrow\frac{-7}{x-3}>1\)
\(\Leftrightarrow-7>x-3\)
\(\Leftrightarrow x< -4\)
\(a,x\ne2;x\ne-2;x\ne0\)
\(b,A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)
\(=\frac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}\)
\(=\frac{1}{2-x}\)
\(c,\)Để A > 0 thi \(\frac{1}{2-x}>0\Leftrightarrow2-x>0\Leftrightarrow x< 2\)
Trả lời:
a, \(A=\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)\left(ĐKXĐ:x\ne-2;x\ne-3;x\ne1\right)\)
\(=\left(\frac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{\left(3-x\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\frac{2-x}{\left(x+2\right)\left(x+3\right)}\right):\frac{x-1-x}{x-1}\)
\(=\frac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+2\right)\left(x+3\right)}:\frac{-1}{x-1}\)
\(=\frac{4-x^2-\left(9-x^2\right)+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{4-x^2-9+x^2+2-x}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}\)
\(=\frac{-x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{x-1}{-1}=\frac{\left(-x-3\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)\left(-1\right)}=\frac{-\left(x+3\right)\left(x+1\right)}{-\left(x+2\right)\left(x+3\right)}=\frac{x+1}{x+2}\)
b, A > 0
\(\frac{x+1}{x+2}>0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x>-2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x< -2\end{cases}}\)
Vậy để A > 0 thì x > - 1 với x khác 1
hoặc x < - 2 với x khác - 3
ĐKXĐ : \(\hept{\begin{cases}x\ne-3\\x\ne-2\\x\ne1\end{cases}}\);
Ta có \(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\)
\(=\frac{\left(2-x\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}\)
\(=\frac{-x-3}{\left(x+3\right)\left(x+2\right)}=-\frac{1}{x+2}\)
Khi đó \(\left(\frac{2-x}{x+3}-\frac{3-x}{x+2}+\frac{2-x}{x^2+5x+6}\right):\left(1-\frac{x}{x-1}\right)=-\frac{1}{x+2}:-\frac{1}{x-1}=\frac{x-1}{x+2}\)
Khi A = 0 => x - 1 = 0 => x = 1 (loại)
Khi A > 0 => \(\frac{x-1}{x+2}>0\)
TH1 : \(\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow x>1\)
TH2 \(\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Rightarrow x< -2\)
Vậy với x > 1 hoặc x < - 2 ; x \(\ne\)-3 thì A > 0