K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2019

\(C=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow3C=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

Trừ dưới cho trên:

\(2C=1+\frac{2}{3}-\frac{1}{3}+\frac{3}{3^2}-\frac{2}{3^2}+\frac{4}{3^3}-\frac{3}{3^3}+...+\frac{100}{3^{99}}-\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(2C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=B\Rightarrow2C=B-\frac{100}{3^{100}}\)

\(B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3B-3+\frac{1}{3^{99}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=B\)

\(\Rightarrow2B=3-\frac{1}{3^{99}}\Rightarrow B=\frac{3}{2}-\frac{1}{2.3^{99}}< \frac{3}{2}\)

\(\Rightarrow2C=B-\frac{100}{3^{100}}< B< \frac{3}{2}\Rightarrow C< \frac{3}{4}\)

15 tháng 5 2017

Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

             \(=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+....+\left(\frac{1}{99}-\frac{1}{100}\right)\)

               \(\frac{1}{2}-\frac{1}{100}=\frac{49}{100}< \frac{3}{4}\left(đpcm\right)\)

1 tháng 7 2017

Ta có : \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+......+\frac{1}{2^{100}}\)

\(\Rightarrow4A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^4}+.....+\frac{1}{2^{98}}\)

\(\Rightarrow4A-A=\frac{1}{2}-\frac{1}{2^{100}}\)

\(\Rightarrow3A=\frac{2^{99}-1}{2^{100}}\)

\(\Rightarrow A=\frac{2^{99}-1}{\frac{2^{200}}{3}}\)

Vì : \(\frac{2^{99}-1}{2^{200}}< 1\)

Nên : \(A< \frac{1}{3}\)

5 tháng 11 2018

Ta thấy : \(\frac{1}{2^2}< \frac{1}{3}\)

             \(\frac{1}{2^4}< \frac{1}{3}\)

                 ...

              \(\frac{1}{2^{100}}< \frac{1}{3}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}< \frac{1}{3}\)

Vậy \(A< \frac{1}{3}\)

Chúc bạn học tốt :>

5 tháng 11 2018

A.\(4\)=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

=> 4A-A=1-\(\frac{1}{2^{100}}\)

=> A=\(\frac{1}{3}\left(1-\frac{1}{2^{100}}\right)=\frac{1}{3}-\frac{1}{3}.\frac{1}{2^{100}}< \frac{1}{3}\)

8 tháng 8 2020

Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó

8 tháng 8 2020

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

Nên từ đây => \(A< 1\)     (ĐPCM)

21 tháng 8 2016

b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

   3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

3A-A=\(1-\frac{1}{3^{99}}\)

   2A=\(1-\frac{1}{3^{99}}\)

vì 2A<1

=> A<\(\frac{1}{2}\)

22 tháng 8 2016

anh làm cho e câu a nữa được không ạ

 

5 tháng 4 2017

Deo biet

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

4 tháng 2 2020

\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^2}+...+\frac{99}{3^{89}}-\frac{100}{3^{99}}\)

\(\Rightarrow4C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4C< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\left(1\right)\)

Đặt: \(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(\Rightarrow3B=2+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(4B=B+3B=3-\frac{1}{3^{99}}< 3\)

\(\Rightarrow B< \frac{3}{4}\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow4C< B< \frac{3}{4}\)

\(\Rightarrow C< \frac{3}{16}\left(đpcm\right)\)

(Đánh nhanh quá sai chỗ nào thông cảm nha :))