Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) ĐK: $x>0; x\neq 4$
Khi $x=36$ thì $\sqrt{x}=6$
$A=\frac{6+4}{6+2.36}=\frac{5}{39}$
b) \(B=\frac{\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}-\frac{2(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{-(\sqrt{x}+4)}{(\sqrt{x}-2)(\sqrt{x}+2)}\)
\(\Rightarrow P=B:A=\frac{-(\sqrt{x}+4)}{(\sqrt{x}-2)(\sqrt{x}+2)}:\frac{\sqrt{x}+4}{\sqrt{x}+2x}=\frac{\sqrt{x}+2x}{(2-\sqrt{x})(\sqrt{x}+2)}\)
Lời giải:
a.
\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(2\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-(2\sqrt{x}+1)+2(\sqrt{x}+1)\)
\(=\sqrt{x}(\sqrt{x}-1)-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\\ =x-\sqrt{x}+1\)
b.
$A=x-\sqrt{x}+1=(x-\sqrt{x}+\frac{1}{4})+\frac{3}{4}$
$=(\sqrt{x}-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}=\frac{3}{4}$
$\Rightarrow A_{\min}=\frac{3}{4}$
Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$
a, Với \(x>0;x\ne4;x\ne9\)
\(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\left(\frac{8\sqrt{x}-4x+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{3-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}=\frac{4x}{3-\sqrt{x}}\)
b, Ta có : A = -2 hay
\(\frac{4x}{3-\sqrt{x}}=-2\Rightarrow4x=-6+2\sqrt{x}\)
\(\Leftrightarrow4x+6-2\sqrt{x}=0\Leftrightarrow2\left(2x+3-\sqrt{x}\right)=0\)
\(\Leftrightarrow2x+3-\sqrt{x}=0\Leftrightarrow\sqrt{x}=2x+3\)
bình phương 2 vế ta có :
\(x=\left(2x+3\right)^2=4x^2+12x+9\)
\(\Leftrightarrow-4x^2-11x-9=0\)giải delta ta thu được : \(x=-\frac{11\pm\sqrt{23}i}{8}\)
\(a,A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
\(=\frac{4\sqrt{x}.\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2.\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)
\(=\frac{\left(4x+8\sqrt{x}\right)\left(\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)
\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)
\(=\frac{4x}{\sqrt{x}-3}\)
\(a)A=\dfrac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\dfrac{2+\sqrt{8}}{1+\sqrt{2}}\\ A=\dfrac{\left(\sqrt{3}-\sqrt{6}\right)\left(1+\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}-\dfrac{\left(2+\sqrt{8}\right)\left(1-\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}\\ A=-\left(\sqrt{3}+\sqrt{6}-\sqrt{6}-2\sqrt{3}\right)+2-2\sqrt{2}+2\sqrt{2}-4\\ A=\sqrt{3}-2\)
\(b)B=\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\\ B=\left[\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\\ B=\dfrac{\sqrt{x}+2-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\left(\sqrt{x}+2\right)\\ B=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\\ B=\dfrac{4}{x-4}\)
giải phương trình
a)\(\sqrt{x^8}=256\) b)\(\sqrt{x^2-2x+1}=x-1\)
Sửa đề: x-4
\(A=\dfrac{x-2\sqrt{x}+x+4\sqrt{x}+4+2x+8}{x-4}=\dfrac{4x+2\sqrt{x}+12}{x-4}\)
a) \(P=\dfrac{x+3\sqrt{x}+x-3\sqrt{x}}{x-9}.\dfrac{x-9}{2\sqrt{x}}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)
b) \(P=\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
a: \(=\dfrac{x+3\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{x-9}{2\sqrt{x}}\)
\(=\sqrt{x}\)
\(\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}-\dfrac{2x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{4-2\sqrt{x}+4\sqrt{x}+2x-2x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{4-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2}{2+\sqrt{x}}\)